Previous |  Up |  Next

Article

Title: Conditions of Prodi-Serrin's type for local regularity of suitable weak solutions to the Navier-Stokes equations (English)
Author: Skalák, Zdeněk
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 43
Issue: 4
Year: 2002
Pages: 619-639
.
Category: math
.
Summary: In the context of suitable weak solutions to the Navier-Stokes equations we present local conditions of Prodi-Serrin's type on velocity ${\bold v}$ and pressure $p$ under which $({\bold x}_0,t_0)\in \Omega \times (0,T)$ is a regular point of ${\bold v}$. The conditions are imposed exclusively on the outside of a sufficiently narrow space-time paraboloid with the vertex $({\bold x}_0,t_0)$ and the axis parallel with the $t$-axis. (English)
Keyword: Navier-Stokes equations
Keyword: suitable weak solutions
Keyword: local regularity
MSC: 35B65
MSC: 35Q10
MSC: 35Q30
MSC: 76D05
idZBL: Zbl 1090.35148
idMR: MR2045785
.
Date available: 2009-01-08T19:25:44Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119352
.
Reference: [1] Caffarelli L., Kohn R., Nirenberg L.: Partial regularity of suitable weak solutions of the Navier-Stokes equations.Comm. Pure Apl. Math. 35 (1982), 771-831. Zbl 0509.35067, MR 0673830
Reference: [2] Kučera P., Skalák Z.: Smoothness of the velocity time derivative in the vicinity of regular points of the Navier-Stokes equations.Proceedings of the $4^{th}$ Seminar ``Euler and Navier-Stokes Equations (Theory, Numerical Solution, Applications)'', Institute of Thermomechanics AS CR, Editors: K. Kozel, J. Příhoda, M. Feistauer, Prague, 2001, pp.83-86.
Reference: [3] Ladyzhenskaya O.A., Seregin G.A.: On partial regularity of suitable weak solutions to the three-dimensional Navier-Stokes equations.J. Math. Fluid Mech. 1 (1999), 356-387. Zbl 0954.35129, MR 1738171
Reference: [4] Lin F.: A new proof of the Caffarelli-Kohn-Nirenberg Theorem.Comm. Pure Appl. Math. 51 (1998), 241-257. Zbl 0958.35102, MR 1488514
Reference: [5] Neustupa J.: Partial regularity of weak solutions to the Navier-Stokes equations in the class $L^\infty(0,T,L^3(Ømega)^3)$.J. Math. Fluid Mech. 1 (1999), 309-325. MR 1738173
Reference: [6] Neustupa J.: A removable singularity of a suitable weak solution to the Navier-Stokes equations.preprint.
Reference: [7] Nečas J., Neustupa J.: New conditions for local regularity of a suitable weak solution to the Navier-Stokes equations.preprint.
Reference: [8] Skalák Z.: Removable Singularities of Weak Solutions of the Navier-Stokes Equations.Proceedings of the $4^{th}$ Seminar ``Euler and Navier-Stokes Equations (Theory, Numerical Solution, Applications)'', Institute of Thermomechanics AS CR, Editors: K. Kozel, J. Příhoda, M. Feistauer, Prague, 2001, pp.121-124.
Reference: [9] Temam R.: Navier-Stokes Equations, Theory and Numerical Analysis.North-Holland Publishing Company, Amsterdam, New York, Oxford, revised edition, 1979. Zbl 0981.35001, MR 0603444
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_43-2002-4_4.pdf 294.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo