Title:
|
Spaces of continuous functions, box products and almost-$\omega$-resolvable spaces (English) |
Author:
|
Tamariz-Mascarúa, A. |
Author:
|
Villegas-Rodríguez, H. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
43 |
Issue:
|
4 |
Year:
|
2002 |
Pages:
|
687-705 |
. |
Category:
|
math |
. |
Summary:
|
A dense-in-itself space $X$ is called {\it $C_\square$-discrete} if the space of real continuous functions on $X$ with its box topology, $C_\square(X)$, is a discrete space. A space $X$ is called {\it almost-$\omega$-resolvable} provided that $X$ is the union of a countable increasing family of subsets each of them with an empty interior. We analyze these classes of spaces by determining their relations with $\kappa$-resolvable and almost resolvable spaces. We prove that every almost-$\omega$-resolvable space is $C_\square$-discrete, and that these classes coincide in the realm of completely regular spaces. Also, we prove that almost resolvable spaces and almost-$\omega$-resolvable spaces are two different classes of spaces if there exists a measurable cardinal. Finally, we prove that it is consistent with $ZFC$ that every dense-in-itself space is almost-$\omega$-resolvable, and that the existence of a measurable cardinal is equiconsistent with the existence of a Tychonoff space without isolated points which is not almost-$\omega$-resolvable. (English) |
Keyword:
|
box product |
Keyword:
|
$\kappa$-resolvable space |
Keyword:
|
almost resolvable space |
Keyword:
|
almost-$\omega$-resolvable space |
Keyword:
|
Baire irresolvable space |
Keyword:
|
measurable cardinals |
MSC:
|
54A35 |
MSC:
|
54B10 |
MSC:
|
54C35 |
MSC:
|
54F65 |
idZBL:
|
Zbl 1090.54011 |
idMR:
|
MR2045790 |
. |
Date available:
|
2009-01-08T19:26:20Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119357 |
. |
Reference:
|
[A] Alas O.T., Sanchis M., Tkachenko M.G., Tkachuk V.V., Wilson R.G.: Irresolvable and maximal spaces: Homogeneity versus $\sigma$-discreteness and new ZFC examples.Topology Appl. 107 (2000), 259-273. MR 1779814 |
Reference:
|
[Ar] Arhangel'skii A.V.: Topological Function Spaces.Kluwer Academic Publishers, Mathematics and its Applications Dordrecht, Boston, London 78 (1992). MR 1144519 |
Reference:
|
[B] Bolstein R.: Sets of points of discontinuity.Proc. Amer. Math. Soc. 38 (1973), 193-197. Zbl 0232.54014, MR 0312457 |
Reference:
|
[BNS] Beckenstein E., Narici L., Suffel C., edit. Nachbin L.: Topological Algebras.North Holland, Mathematics Studies Amsterdam, New York, Oxford (1977). MR 0473835 |
Reference:
|
[C] Ceder J.G.: On maximally resolvable spaces.Fund. Math. 55 (1964), 87-93. Zbl 0139.40401, MR 0163279 |
Reference:
|
[CP] Ceder J.G., Pearson T.: On product of maximally resolvable spaces.Pacific J. Math. 22 (1967), 31-45. MR 0217752 |
Reference:
|
[CGF] Comfort W.W., García-Ferreira S.: Resolvability: a selective survey and some new results.Topology Appl. 74 (1996), 149-167. MR 1425934 |
Reference:
|
[CLF] Comfort W.W., Li Feng: The union of resolvable spaces is resolvable.Math. Japonica 38 (1993), 413-414. Zbl 0769.54002, MR 1221007 |
Reference:
|
[CM] Comfort W.W., Masaveu O., Zhou H.: Resolvability in topology and in topological groups.Proc. Ninth Annual Conference on Topology and Applications (June 1993), Ann. New York Acad. Sci. 767 (1995), 17-27. Zbl 0919.54031, MR 1462378 |
Reference:
|
[DH] Di Malo G., Holá Ľ.: Recent Progress in Function Spaces.Seconda Università degli Studi di Napoli, Quaderni di Matematica 3 (1998). MR 1762348 |
Reference:
|
[vD] van Douwen E.K.: Applications of maximal topologies.Topology Appl. 51 (1993), 125-139. Zbl 0845.54028, MR 1229708 |
Reference:
|
[E1] El'kin A.G.: Decomposition of spaces.Soviet Math. Dokl. 10 (1969), 521-525. Zbl 0202.53701 |
Reference:
|
[E2] El'kin A.G.: On the maximal resolvability of products of topological spaces.Soviet Math. Dokl. 10 (1969), 659-662. Zbl 0199.57302, MR 0248726 |
Reference:
|
[FL] Foran J., Liebnits P.: A characterization of almost resolvable spaces.Rend. Circ. Mat. di Palermo, Serie II XL 136-141. MR 1119751 |
Reference:
|
[GJ] Gillman L., Jerison M.: Rings of Continuous Functions.Springer Verlag, Graduate Texts in Mathematics New York, Heidelberg, Berlin (1976). Zbl 0327.46040, MR 0407579 |
Reference:
|
[H] Hewitt E.: A problem of set-theoretic topology.Duke Math. J. 10 (1943), 306-333. Zbl 0060.39407, MR 0008692 |
Reference:
|
[K] Katětov M.: On topological spaces containing no disjoint dense sets.Mat. Sb. 21 (1947), 3-12. MR 0021679 |
Reference:
|
[KST] Kunen K., Szymansky A., Tall F.: Baire irresolvable spaces and ideal theory.Annal Math. Silesiana 2 (14) (1986), 98-107. MR 0861505 |
Reference:
|
[LF] Li Feng: Strongly exactly $n$-resolvable spaces of arbitrarily large dispersion character.Topology Appl. 105 (2000), 31-36. Zbl 0943.54024, MR 1761084 |
Reference:
|
[M1] Malykhin V.I.: Extremally disconnected and similar groups.Soviet Math. Dokl. 16 (1975), 21-25. Zbl 0322.22003 |
Reference:
|
[M2] Malykhin V.I.: On the resolvability of the product of two spaces and a problem of Katětov.Dokl. Akad. Nauk SSSR 222 (1975), 765-729. Zbl 0325.54017 |
Reference:
|
[Ma] Masaveu O.: Dense subsets of some topological groups.Ph.D. thesis, Wesleyan University, Middletown, Connecticut, USA (1995). MR 2692602 |
Reference:
|
[P] Pytke'ev: On maximally resolvable spaces.Proc. Steklov. Inst. Math. 154 (1984), 225-230. |
Reference:
|
[R] Rudin M.E.: A normal space $X$ for which $X \times I$ is not normal.Fund. Math. 73 (1971), 179-186. Zbl 0224.54019, MR 0293583 |
Reference:
|
[T] Tietze H.: Beitrage zur allgemeinen topologie I.Math. Ann. 88 (1923), 280-312. MR 1512131 |
Reference:
|
[V] Vaughan J.E.: Non-normal products of $ømega _{\mu}$metrizable spaces.Proc. Amer. Math. Soc. 51 (1975), 203-208. MR 0370464 |
Reference:
|
[Vi1] Villegas L.M.: On resolvable spaces and groups.Comment. Math. Univ. Carolinae 36 (1995), 579-584. Zbl 0837.22001, MR 1364498 |
Reference:
|
[Vi2] Villegas L.M.: Maximal resolvability of some topological spaces.Bol. Soc. Mat. Mexicana 5 (1999), 123-136. Zbl 0963.22001, MR 1692526 |
Reference:
|
[W] Willard S.: General Topology.Addison-Wesley Publishing Company (1970). Zbl 0205.26601, MR 0264581 |
Reference:
|
[Wi] Williams S.W.: Box products.in Handbook of Set Theoretic Topology, K. Kunen and J.E. Vaughan, Eds. North Holland (1984), 169-200. Zbl 0568.54011, MR 0776623 |
. |