Previous |  Up |  Next

Article

Title: Spaces of continuous functions, box products and almost-$\omega$-resolvable spaces (English)
Author: Tamariz-Mascarúa, A.
Author: Villegas-Rodríguez, H.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 43
Issue: 4
Year: 2002
Pages: 687-705
.
Category: math
.
Summary: A dense-in-itself space $X$ is called {\it $C_\square$-discrete} if the space of real continuous functions on $X$ with its box topology, $C_\square(X)$, is a discrete space. A space $X$ is called {\it almost-$\omega$-resolvable} provided that $X$ is the union of a countable increasing family of subsets each of them with an empty interior. We analyze these classes of spaces by determining their relations with $\kappa$-resolvable and almost resolvable spaces. We prove that every almost-$\omega$-resolvable space is $C_\square$-discrete, and that these classes coincide in the realm of completely regular spaces. Also, we prove that almost resolvable spaces and almost-$\omega$-resolvable spaces are two different classes of spaces if there exists a measurable cardinal. Finally, we prove that it is consistent with $ZFC$ that every dense-in-itself space is almost-$\omega$-resolvable, and that the existence of a measurable cardinal is equiconsistent with the existence of a Tychonoff space without isolated points which is not almost-$\omega$-resolvable. (English)
Keyword: box product
Keyword: $\kappa$-resolvable space
Keyword: almost resolvable space
Keyword: almost-$\omega$-resolvable space
Keyword: Baire irresolvable space
Keyword: measurable cardinals
MSC: 54A35
MSC: 54B10
MSC: 54C35
MSC: 54F65
idZBL: Zbl 1090.54011
idMR: MR2045790
.
Date available: 2009-01-08T19:26:20Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119357
.
Reference: [A] Alas O.T., Sanchis M., Tkachenko M.G., Tkachuk V.V., Wilson R.G.: Irresolvable and maximal spaces: Homogeneity versus $\sigma$-discreteness and new ZFC examples.Topology Appl. 107 (2000), 259-273. MR 1779814
Reference: [Ar] Arhangel'skii A.V.: Topological Function Spaces.Kluwer Academic Publishers, Mathematics and its Applications Dordrecht, Boston, London 78 (1992). MR 1144519
Reference: [B] Bolstein R.: Sets of points of discontinuity.Proc. Amer. Math. Soc. 38 (1973), 193-197. Zbl 0232.54014, MR 0312457
Reference: [BNS] Beckenstein E., Narici L., Suffel C., edit. Nachbin L.: Topological Algebras.North Holland, Mathematics Studies Amsterdam, New York, Oxford (1977). MR 0473835
Reference: [C] Ceder J.G.: On maximally resolvable spaces.Fund. Math. 55 (1964), 87-93. Zbl 0139.40401, MR 0163279
Reference: [CP] Ceder J.G., Pearson T.: On product of maximally resolvable spaces.Pacific J. Math. 22 (1967), 31-45. MR 0217752
Reference: [CGF] Comfort W.W., García-Ferreira S.: Resolvability: a selective survey and some new results.Topology Appl. 74 (1996), 149-167. MR 1425934
Reference: [CLF] Comfort W.W., Li Feng: The union of resolvable spaces is resolvable.Math. Japonica 38 (1993), 413-414. Zbl 0769.54002, MR 1221007
Reference: [CM] Comfort W.W., Masaveu O., Zhou H.: Resolvability in topology and in topological groups.Proc. Ninth Annual Conference on Topology and Applications (June 1993), Ann. New York Acad. Sci. 767 (1995), 17-27. Zbl 0919.54031, MR 1462378
Reference: [DH] Di Malo G., Holá Ľ.: Recent Progress in Function Spaces.Seconda Università degli Studi di Napoli, Quaderni di Matematica 3 (1998). MR 1762348
Reference: [vD] van Douwen E.K.: Applications of maximal topologies.Topology Appl. 51 (1993), 125-139. Zbl 0845.54028, MR 1229708
Reference: [E1] El'kin A.G.: Decomposition of spaces.Soviet Math. Dokl. 10 (1969), 521-525. Zbl 0202.53701
Reference: [E2] El'kin A.G.: On the maximal resolvability of products of topological spaces.Soviet Math. Dokl. 10 (1969), 659-662. Zbl 0199.57302, MR 0248726
Reference: [FL] Foran J., Liebnits P.: A characterization of almost resolvable spaces.Rend. Circ. Mat. di Palermo, Serie II XL 136-141. MR 1119751
Reference: [GJ] Gillman L., Jerison M.: Rings of Continuous Functions.Springer Verlag, Graduate Texts in Mathematics New York, Heidelberg, Berlin (1976). Zbl 0327.46040, MR 0407579
Reference: [H] Hewitt E.: A problem of set-theoretic topology.Duke Math. J. 10 (1943), 306-333. Zbl 0060.39407, MR 0008692
Reference: [K] Katětov M.: On topological spaces containing no disjoint dense sets.Mat. Sb. 21 (1947), 3-12. MR 0021679
Reference: [KST] Kunen K., Szymansky A., Tall F.: Baire irresolvable spaces and ideal theory.Annal Math. Silesiana 2 (14) (1986), 98-107. MR 0861505
Reference: [LF] Li Feng: Strongly exactly $n$-resolvable spaces of arbitrarily large dispersion character.Topology Appl. 105 (2000), 31-36. Zbl 0943.54024, MR 1761084
Reference: [M1] Malykhin V.I.: Extremally disconnected and similar groups.Soviet Math. Dokl. 16 (1975), 21-25. Zbl 0322.22003
Reference: [M2] Malykhin V.I.: On the resolvability of the product of two spaces and a problem of Katětov.Dokl. Akad. Nauk SSSR 222 (1975), 765-729. Zbl 0325.54017
Reference: [Ma] Masaveu O.: Dense subsets of some topological groups.Ph.D. thesis, Wesleyan University, Middletown, Connecticut, USA (1995). MR 2692602
Reference: [P] Pytke'ev: On maximally resolvable spaces.Proc. Steklov. Inst. Math. 154 (1984), 225-230.
Reference: [R] Rudin M.E.: A normal space $X$ for which $X \times I$ is not normal.Fund. Math. 73 (1971), 179-186. Zbl 0224.54019, MR 0293583
Reference: [T] Tietze H.: Beitrage zur allgemeinen topologie I.Math. Ann. 88 (1923), 280-312. MR 1512131
Reference: [V] Vaughan J.E.: Non-normal products of $ømega _{\mu}$metrizable spaces.Proc. Amer. Math. Soc. 51 (1975), 203-208. MR 0370464
Reference: [Vi1] Villegas L.M.: On resolvable spaces and groups.Comment. Math. Univ. Carolinae 36 (1995), 579-584. Zbl 0837.22001, MR 1364498
Reference: [Vi2] Villegas L.M.: Maximal resolvability of some topological spaces.Bol. Soc. Mat. Mexicana 5 (1999), 123-136. Zbl 0963.22001, MR 1692526
Reference: [W] Willard S.: General Topology.Addison-Wesley Publishing Company (1970). Zbl 0205.26601, MR 0264581
Reference: [Wi] Williams S.W.: Box products.in Handbook of Set Theoretic Topology, K. Kunen and J.E. Vaughan, Eds. North Holland (1984), 169-200. Zbl 0568.54011, MR 0776623
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_43-2002-4_9.pdf 304.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo