Previous |  Up |  Next

Article

Title: On the subsets of non locally compact points of ultracomplete spaces (English)
Author: Yoshioka, Iwao
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 43
Issue: 4
Year: 2002
Pages: 707-721
.
Category: math
.
Summary: In 1998, S. Romaguera [13] introduced the notion of cofinally Čech-complete spaces equivalent to spaces which we later called ultracomplete spaces. We define the subset of points of a space $X$ at which $X$ is not locally compact and call it an nlc set. In 1999, Garc'{\i}a-Máynez and S. Romaguera [6] proved that every cofinally Čech-complete space has a bounded nlc set. In 2001, D. Buhagiar [1] proved that every ultracomplete GO-space has a compact nlc set. In this paper, ultracomplete spaces which have compact nlc sets are studied. Such spaces contain dense locally compact subspaces and coincide with ultracomplete spaces in the realms of normal $\gamma$-spaces or ks-spaces. (English)
Keyword: locally compact
Keyword: ultracomplete
Keyword: Čech-complete
Keyword: countable character
Keyword: boun\-ded set
MSC: 54A20
MSC: 54D15
MSC: 54D45
MSC: 54E50
idZBL: Zbl 1090.54002
idMR: MR2046191
.
Date available: 2009-01-08T19:26:28Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119358
.
Reference: [1] Buhagiar D.: Non locally compact points in ultracomplete topological spaces.Questions Answers Gen. Topology 19 (2001), 125-131. Zbl 0976.54025, MR 1815353
Reference: [2] Buhagiar D., Yoshioka I.: Ultracomplete topological spaces.to appear in Acta Math. Hungar. 92 (2001). Zbl 0997.54037, MR 1924245
Reference: [3] Buhagiar D., Yoshioka I.: Sums and products of ultracomplete spaces.to appear in Topology Appl. MR 1919293
Reference: [4] Chaber J.: Conditions which imply compactness in countably compact spaces.Bull. Acad. Pol. Sci. Ser. Math. 24 (1976), 993-998. MR 0515000
Reference: [5] Engelking R.: General Topology.Polish Sci. Publ., Warsaw, 1977. Zbl 0684.54001, MR 0500780
Reference: [6] García-Máynez A., Romaguera S.: Perfectly pre-images of cofinally complete metric spaces.Comment. Math. Univ. Carolinae 40 (1999), 335-342. MR 1732655
Reference: [7] Henriksen M., Isbell J.R.: Some properties of compactifications.Duke Math. J. 35 (1958), 83-105. Zbl 0081.38604, MR 0096196
Reference: [8] Hodel R.E.: Spaces defined by sequences of open covers which guarantee that certain sequences have cluster points.Duke Math. J. 39 (1972), 253-263. Zbl 0242.54027, MR 0293580
Reference: [9] Howes N.R.: On completeness.Pacific J. Math. 38 (1971), 431-440. Zbl 0221.54027, MR 0307183
Reference: [10] Lutzer D.J.: Semimetrizable and stratifiable spaces.Gen. Topology Appl. 1 (1971), 43-48. Zbl 0211.25704, MR 0296893
Reference: [11] Michael E.A.: A quintuple quotient quest.Gen. Topology Appl. 2 (1972), 91-138. Zbl 0238.54009, MR 0309045
Reference: [12] Nagata J.: Modern General Topology.North-Holland Math. Library, Amsterdam, 1985, second revised edition. Zbl 0598.54001, MR 0831659
Reference: [13] Romaguera S.: On cofinally complete metric spaces.Questions Answers Gen. Topology 16 (1998), 165-170. Zbl 0941.54030, MR 1642068
Reference: [14] Vaughan J.E.: Spaces of countable and point-countable type.Trans. Amer. Math. Soc. 151 (1970), 341-351. Zbl 0203.55403, MR 0266157
Reference: [15] Yoshioka I.: On the metrizations of $\gamma$-spaces and ks-spaces.Questions Answers Gen. Topology 19 (2001), 55-72. Zbl 0983.54030, MR 1815346
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_43-2002-4_10.pdf 254.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo