Title:
|
Integral and derivative operators of functional order on generalized Besov and Triebel-Lizorkin spaces in the setting of spaces of homogeneous type (English) |
Author:
|
Hartzstein, Silvia I. |
Author:
|
Viviani, Beatriz E. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
43 |
Issue:
|
4 |
Year:
|
2002 |
Pages:
|
723-754 |
. |
Category:
|
math |
. |
Summary:
|
In the setting of spaces of homogeneous-type, we define the Integral, $I_{\phi}$, and Derivative, $D_{\phi}$, operators of order $\phi$, where $\phi$ is a function of positive lower type and upper type less than $1$, and show that $I_{\phi}$ and $D_{\phi}$ are bounded from Lipschitz spaces $\Lambda^{\xi}$ to $\Lambda^{\xi \phi}$ and $\Lambda^{\xi/\phi}$ respectively, with suitable restrictions on the quasi-increasing function $\xi$ in each case. We also prove that $I_{\phi}$ and $D_{\phi}$ are bounded from the generalized Besov $\dot{B}_{p}^{\psi, q}$, with $1 \leq p, q < \infty $, and Triebel-Lizorkin spaces $\dot{F}_{p}^{\psi, q}$, with $1 < p, q < \infty $, of order $\psi$ to those of order $\phi \psi$ and $\psi/\phi$ respectively, where $\psi$ is the quotient of two quasi-increasing functions of adequate upper types. (English) |
Keyword:
|
integral and derivative operators of functional order |
Keyword:
|
fractional integral operator |
Keyword:
|
fractional derivative operator |
Keyword:
|
spaces of homogeneous type |
Keyword:
|
Besov spaces |
Keyword:
|
Triebel-Lizorkin spaces |
MSC:
|
26A33 |
MSC:
|
42B35 |
MSC:
|
46E35 |
MSC:
|
47G10 |
idZBL:
|
Zbl 1091.26002 |
idMR:
|
MR2046192 |
. |
Date available:
|
2009-01-08T19:26:34Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119359 |
. |
Reference:
|
[B] Blasco O.: Weighted Lipschitz spaces defined by a Banach space.García-Cuerva, J. et al., Fourier Analysis and Partial Differential Equations, CRC, 1995, Chapter 7, pp.131-140. Zbl 0870.46021, MR 1330235 |
Reference:
|
[FJW] Frazier M., Jawerth B., Weiss G.: Littlewood-Paley theory and the study of function spaces.CBMS, Regional Conference Series in Math., No. 79, 1991. Zbl 0757.42006, MR 1107300 |
Reference:
|
[GSV] Gatto A.E., Segovia C., Vági S.: On fractional differentiation and integration on spaces of homogeneous type.Rev. Mat. Iberoamericana 12 2 (1996), 111-145. MR 1387588 |
Reference:
|
[GV] Gatto A.E., Vági S.: On Sobolev spaces of fractional order and $\epsilon$-families of operators on spaces of homogeneous type.Studia Math. 133.1 (1999), 19-27. MR 1671965 |
Reference:
|
[H] Hartzstein S.I. Acotación de operadores de Calderón-Zygmund en espacios de Triebel-Lizorkin y de Besov generalizados sobre espacios de tipo homogéneo: Thesis, 2000, UNL, Santa Fe, Argentina.. |
Reference:
|
[HV] Hartzstein S.I., Viviani B.E.: $T1$ theorems on generalized Besov and Triebel-Lizorkin spaces over spaces of homogeneous type.Revista de la Unión Matemática Argentina 42 1 (2000), 51-73. Zbl 0995.42011, MR 1852730 |
Reference:
|
[HS] Han Y.-S., Sawyer E.T.: Littlewood-Paley theory on spaces of homogeneous type and the classical function spaces.Memoirs Amer. Math. Soc., Vol. 110, No .530, 1994. Zbl 0806.42013, MR 1214968 |
Reference:
|
[I] Iaffei B.: Espacios Lipschitz generalizados y operadores invariantes por traslaciones.Thesis, UNL, 1996. |
Reference:
|
[J] Janson S.: Generalization on Lipschitz spaces and applications to Hardy spaces and bounded mean oscillation.Duke Math. J. 47 (1980), 959-982. MR 0596123 |
Reference:
|
[MS] Macías R.A., Segovia C.: Lipschitz functions on spaces of homogeneous type.Adv. Math. 33 (1979), 257-270. MR 0546295 |
. |