Previous |  Up |  Next

Article

Title: Integral and derivative operators of functional order on generalized Besov and Triebel-Lizorkin spaces in the setting of spaces of homogeneous type (English)
Author: Hartzstein, Silvia I.
Author: Viviani, Beatriz E.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 43
Issue: 4
Year: 2002
Pages: 723-754
.
Category: math
.
Summary: In the setting of spaces of homogeneous-type, we define the Integral, $I_{\phi}$, and Derivative, $D_{\phi}$, operators of order $\phi$, where $\phi$ is a function of positive lower type and upper type less than $1$, and show that $I_{\phi}$ and $D_{\phi}$ are bounded from Lipschitz spaces $\Lambda^{\xi}$ to $\Lambda^{\xi \phi}$ and $\Lambda^{\xi/\phi}$ respectively, with suitable restrictions on the quasi-increasing function $\xi$ in each case. We also prove that $I_{\phi}$ and $D_{\phi}$ are bounded from the generalized Besov $\dot{B}_{p}^{\psi, q}$, with $1 \leq p, q < \infty $, and Triebel-Lizorkin spaces $\dot{F}_{p}^{\psi, q}$, with $1 < p, q < \infty $, of order $\psi$ to those of order $\phi \psi$ and $\psi/\phi$ respectively, where $\psi$ is the quotient of two quasi-increasing functions of adequate upper types. (English)
Keyword: integral and derivative operators of functional order
Keyword: fractional integral operator
Keyword: fractional derivative operator
Keyword: spaces of homogeneous type
Keyword: Besov spaces
Keyword: Triebel-Lizorkin spaces
MSC: 26A33
MSC: 42B35
MSC: 46E35
MSC: 47G10
idZBL: Zbl 1091.26002
idMR: MR2046192
.
Date available: 2009-01-08T19:26:34Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119359
.
Reference: [B] Blasco O.: Weighted Lipschitz spaces defined by a Banach space.García-Cuerva, J. et al., Fourier Analysis and Partial Differential Equations, CRC, 1995, Chapter 7, pp.131-140. Zbl 0870.46021, MR 1330235
Reference: [FJW] Frazier M., Jawerth B., Weiss G.: Littlewood-Paley theory and the study of function spaces.CBMS, Regional Conference Series in Math., No. 79, 1991. Zbl 0757.42006, MR 1107300
Reference: [GSV] Gatto A.E., Segovia C., Vági S.: On fractional differentiation and integration on spaces of homogeneous type.Rev. Mat. Iberoamericana 12 2 (1996), 111-145. MR 1387588
Reference: [GV] Gatto A.E., Vági S.: On Sobolev spaces of fractional order and $\epsilon$-families of operators on spaces of homogeneous type.Studia Math. 133.1 (1999), 19-27. MR 1671965
Reference: [H] Hartzstein S.I. Acotación de operadores de Calderón-Zygmund en espacios de Triebel-Lizorkin y de Besov generalizados sobre espacios de tipo homogéneo: Thesis, 2000, UNL, Santa Fe, Argentina..
Reference: [HV] Hartzstein S.I., Viviani B.E.: $T1$ theorems on generalized Besov and Triebel-Lizorkin spaces over spaces of homogeneous type.Revista de la Unión Matemática Argentina 42 1 (2000), 51-73. Zbl 0995.42011, MR 1852730
Reference: [HS] Han Y.-S., Sawyer E.T.: Littlewood-Paley theory on spaces of homogeneous type and the classical function spaces.Memoirs Amer. Math. Soc., Vol. 110, No .530, 1994. Zbl 0806.42013, MR 1214968
Reference: [I] Iaffei B.: Espacios Lipschitz generalizados y operadores invariantes por traslaciones.Thesis, UNL, 1996.
Reference: [J] Janson S.: Generalization on Lipschitz spaces and applications to Hardy spaces and bounded mean oscillation.Duke Math. J. 47 (1980), 959-982. MR 0596123
Reference: [MS] Macías R.A., Segovia C.: Lipschitz functions on spaces of homogeneous type.Adv. Math. 33 (1979), 257-270. MR 0546295
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_43-2002-4_11.pdf 350.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo