Previous |  Up |  Next

Article

Title: $C^{1,\alpha}$ local regularity for the solutions of the $p$-Laplacian on the Heisenberg group. The case $1+\frac{1}{\sqrt{5}}<p\le2$ (English)
Author: Marchi, Silvana
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 44
Issue: 1
Year: 2003
Pages: 33-56
Summary lang: English
.
Category: math
.
Summary: We prove the Hölder continuity of the homogeneous gradient of the weak solutions $u\in W_{\operatorname{loc}}^{1,p}$ of the p-Laplacian on the Heisenberg group $\Cal H^n$, for $1+\frac{1}{\sqrt{5}} <p\le 2$. (English)
Keyword: degenerate elliptic equations
Keyword: weak solutions
Keyword: regularity
Keyword: higher differentiability
MSC: 35B65
MSC: 35D10
MSC: 35H20
MSC: 35J60
MSC: 35J70
idZBL: Zbl 1098.35055
idMR: MR2045844
.
Date available: 2009-01-08T19:27:16Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119366
.
Related article: http://dml.cz/handle/10338.dmlcz/119394
.
Reference: [1] Capogna L.: Regularity of quasilinear equations in the Heisenberg group.Comm. Pure Appl. Math. 50 (1997), 867-889. MR 1459590
Reference: [2] Capogna L.: Regularity for quasilinear equations and $1$-quasiconformal maps in Carnot groups.Math. Ann. 313 (1999), 263-295. Zbl 0927.35024, MR 1679786
Reference: [3] Capogna L., Danielli D., Garofalo N.: An embedding theorem and the Harnack inequality for nonlinear subelliptic equations.Comm. Partial Differential Equations 18 (9-10) (1993), 1765-1794. Zbl 0802.35024, MR 1239930
Reference: [4] Cutrí A., Garroni M.G.: Existence, uniqueness and regularity results for integro-differential Heisenberg equations.Adv. in Differential Equations 1 (1996), 920-939. MR 1409894
Reference: [5] Di Benedetto E.: $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations.Nonlinear Anal. 7 8 (1983), 827-850. MR 0709038
Reference: [6] Evans C.L.: A new proof of local $C^{1+\alpha }$ regularity for solutions of certain degenerate elliptic P.D.E..J. Differential Equations 45 (1982), 356-373. MR 0672713
Reference: [7] Folland G.B.: Subelliptic estimates and function spaces on nilpotent Lie groups.Ark. Mat. 13 (1975), 161-207. Zbl 0312.35026, MR 0494315
Reference: [8] Folland G.B., Stein E.M.: Estimates for the $øverline{\partial}_h$ complex and analysis on the Heisenberg group.Comm. Pure Appl. Math. 27 (1974), 459-522. MR 0367477
Reference: [9] Giusti E.: Direct methods in the calculus of variations (in Italian).Unione Matematica Italiana, Bologna (1994). MR 1707291
Reference: [10] Hörmander L.: Hypoelliptic second order differential equations.Acta Math. 119 (1967), 147-171. MR 0222474
Reference: [11] Jerison D.: The Poincaré inequality for vector fields satisfying Hörmander's condition.Duke Math. J. 53 (1986), 503-523. Zbl 0614.35066, MR 0850547
Reference: [12] Ladyzenskaja O.A., Ural'tzeva N.N.: Linear and Quasilinear Elliptic Equations.Academic Press, New York, 1968. MR 0244627
Reference: [13] Lewis J.: Capacitary functions in convex rings.Arch. Rational Mech. Anal. 66 (1977), 201-224. Zbl 0393.46028, MR 0477094
Reference: [14] Lewis J.: Regularity of the derivatives of solutions of certain degenerate elliptic equations.Indiana Univ. Math. J. 32 6 (1983), 849-858. MR 0721568
Reference: [15] Lu G.: Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications.Rev. Mat. Iberoamericana 8 3 (1992), 367-439. Zbl 0804.35015, MR 1202416
Reference: [16] Maz'ja V.G.: Sobolev Spaces.Springer-Verlag, Berlin-Heidelberg-New York, 1985. Zbl 0692.46023
Reference: [17] Marchi S.: Hölder continuity and Harnack inequality for De Giorgi classes related to Hörmander vector fields.Ann. Mat. Pura Appl. (IV) CLXVIII (1995), 171-188. Zbl 0861.35018, MR 1378243
Reference: [18] Marchi S.: $C^{1,\alpha}$ local regularity for the solutions of the p-Laplacian on the Heisenberg group. The case $2\le p<1+\sqrt{5}$.Z. Anal. Anwendungen 20 (2001), 3 617-636. Zbl 0988.35066, MR 1863937
Reference: [19] Marchi S.: $L^p$ regularity of the derivatives in the second commutator's direction for nonlinear elliptic equations on the Heisenberg group.in print on Accademia dei XL. Zbl 0102.20501
Reference: [20] Moser J.: On Harnack's theorem for elliptic differential equations.Comm. Pure Appl. Math. XIV (1991), 577-591. MR 0159138
Reference: [21] Nagel A., Stein E.M., Wainger S.: Balls and metrics defined by vector fields I: Basic properties.Acta Math. 155 (1985), 103-147. Zbl 0578.32044, MR 0793239
Reference: [22] Serrin J.: Local behaviour of solutions of quasi-linear elliptic equations.Acta Math. 111 (1964), 247-302. MR 0170096
Reference: [23] Stein E.M.: Singular Integrals and Differentiability Properties.Princeton Univ. Press, Princeton, 1970. Zbl 0281.44003, MR 0290095
Reference: [24] Triebel H.: Interpolation Theory, Function Spaces, Differential Operators.North Holland, Amsterdam-New York-Oxford, 1978. Zbl 0830.46028, MR 0503903
Reference: [25] Triebel H.: Theory of Function Spaces.Birkhäuser Verlag, Basel-Boston-Stuttgart, 1983. Zbl 1104.46001, MR 0781540
Reference: [26] Tolksdorf P.: Regularity for a more general class of quasilinear elliptic equations.J. Differential Equations 51 (1984), 126-150. MR 0727034
Reference: [27] Uhlenbeck K.: Regularity for a class of nonlinear elliptic systems.Acta Math. 138 (1977), 219-240. Zbl 0372.35030, MR 0474389
Reference: [28] Ural'tzeva N.N.: Degenerate quasilinear elliptic systems.Zap. Nauchno Sem. Leningrad Otdel. Mat. Steklov 7 (1968), 184-222. MR 0244628
Reference: [29] Xu C.J.: Regularity for quasilinear second-order subelliptic equations.Comm. Pure Appl. Math. XLV (1992), 77-96. Zbl 0827.35023, MR 1135924
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_44-2003-1_4.pdf 316.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo