Title:
|
Korn's First Inequality with variable coefficients and its generalization (English) |
Author:
|
Pompe, Waldemar |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
44 |
Issue:
|
1 |
Year:
|
2003 |
Pages:
|
57-70 |
. |
Category:
|
math |
. |
Summary:
|
If $\Omega \subset \Bbb R^n$ is a bounded domain with Lipschitz boundary $\partial \Omega $ and $\Gamma $ is an open subset of $\partial \Omega $, we prove that the following inequality $$ \biggl(\int_\Omega |A(x)\nabla u(x)|^p\,dx\biggr)^{1/p} + \biggl(\int_\Gamma |u(x)|^p\,d\Cal H^{n-1}(x)\biggr)^{1/p} \geq c\, \|u\|_{W^{1,p}{(\Omega )}} $$ holds for all $u\in W^{1,p}(\Omega ;\Bbb R^m)$ and $1<p<\infty $, where $$ (A(x)\nabla u(x))_k=\sum_{i=1}^m\sum_{j=1}^n\, a_k^{ij}(x)\,\frac{\partial u_i}{\partial x_j}(x) \quad (k=1,2,\ldots,r; r\geq m) $$ defines an elliptic differential operator of first order with continuous coefficients on $\overline{\Omega }$. As a special case we obtain $$ \int_{\Omega }\bigl|\nabla u(x)F(x)+(\nabla u(x)F(x))^T\bigr|^p\,dx\geq c\int_{\Omega }|\nabla u(x)|^p\,dx\,, \leqno{(*)} $$ for all $u\in W^{1,p}(\Omega ;\Bbb R^n)$ vanishing on $\Gamma $, where $F:\overline{\Omega }\rightarrow M^{n\times n}(\Bbb R)$ is a continuous mapping with $\operatorname{det} F(x)\geq \mu >0$. Next we show that $(*)$ is not valid if $n\geq 3$, $F\in L^\infty(\Omega )$ and $\operatorname{det} F(x)=1$, but does hold if $p=2$, $\Gamma =\partial \Omega $ and $F(x)$ is symmetric and positive definite in $\Omega $. (English) |
Keyword:
|
Korn's Inequality |
Keyword:
|
coercive inequalities |
MSC:
|
26D10 |
MSC:
|
26D15 |
MSC:
|
35F15 |
MSC:
|
35J55 |
idZBL:
|
Zbl 1098.35042 |
idMR:
|
MR2045845 |
. |
Date available:
|
2009-01-08T19:27:22Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119367 |
. |
Reference:
|
[1] Besov O.V.: On coercivity in nonisotropic Sobolev spaces.Math. USSR-Sbornik, vol. 2 (1967), no. 4, 521-534. Zbl 0169.47101 |
Reference:
|
[2] Calderón A.P., Zygmund A.: On singular integrals.Amer. J. Math. 78 (1956), 289-309. MR 0084633 |
Reference:
|
[3] Chen W., Jost J.: A Riemann version of Korn's Inequality.Calc. Var. (2001). |
Reference:
|
[4] Ciarlet P.G.: Mathematical Elasticity, Volume I: Three-dimensional Elasticity.North-Holland, 1988. Zbl 0648.73014, MR 0936420 |
Reference:
|
[5] Kałamajska A.: Coercive inequalities on weighted Sobolev spaces.Coll. Math. LXVI (1994), 309-318. MR 1268073 |
Reference:
|
[6] Maz'ya V.G.: Sobolev Spaces.Springer, 1985. Zbl 1152.46002, MR 0817985 |
Reference:
|
[7] Mikhlin S.G.: Multidimensional singular integrals and integral equations.Pergamon Press, 1965. Zbl 0129.07701, MR 0185399 |
Reference:
|
[8] Nečas J.: Sur les normes équivalentes dans $W^{(k)}_p(Ømega)$ et sur la coercivité des formes formellement positives.Séminaire de mathématiques supérieures, 1965. Fasc. 19: Équations aux dérivées partielles (1966), 101-128. |
Reference:
|
[9] Nečas J., Hlaváček I.: Mathematical Theory of Elastic and Elasto-plastic Bodies: An Introduction.Elsevier Scientific Publishing Company, 1981. MR 0600655 |
Reference:
|
[10] Neff P.: On Korn's First Inequality with nonconstant coefficients.Proc. Roy. Soc. Edinburgh 132A (2002), 221-243. MR 1884478 |
Reference:
|
[11] Neff P.: A Korn's First Inequality with $W^{1,4}(Ømega)$-coefficients.preprint. |
Reference:
|
[12] Neff P.: Local existence and uniqueness for quasistatic finite plasticity with grain boundary relaxation.preprint. Zbl 1072.74013, MR 2126571 |
. |