Previous |  Up |  Next

Article

Title: Korn's First Inequality with variable coefficients and its generalization (English)
Author: Pompe, Waldemar
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 44
Issue: 1
Year: 2003
Pages: 57-70
.
Category: math
.
Summary: If $\Omega \subset \Bbb R^n$ is a bounded domain with Lipschitz boundary $\partial \Omega $ and $\Gamma $ is an open subset of $\partial \Omega $, we prove that the following inequality $$ \biggl(\int_\Omega |A(x)\nabla u(x)|^p\,dx\biggr)^{1/p} + \biggl(\int_\Gamma |u(x)|^p\,d\Cal H^{n-1}(x)\biggr)^{1/p} \geq c\, \|u\|_{W^{1,p}{(\Omega )}} $$ holds for all $u\in W^{1,p}(\Omega ;\Bbb R^m)$ and $1<p<\infty $, where $$ (A(x)\nabla u(x))_k=\sum_{i=1}^m\sum_{j=1}^n\, a_k^{ij}(x)\,\frac{\partial u_i}{\partial x_j}(x) \quad (k=1,2,\ldots,r; r\geq m) $$ defines an elliptic differential operator of first order with continuous coefficients on $\overline{\Omega }$. As a special case we obtain $$ \int_{\Omega }\bigl|\nabla u(x)F(x)+(\nabla u(x)F(x))^T\bigr|^p\,dx\geq c\int_{\Omega }|\nabla u(x)|^p\,dx\,, \leqno{(*)} $$ for all $u\in W^{1,p}(\Omega ;\Bbb R^n)$ vanishing on $\Gamma $, where $F:\overline{\Omega }\rightarrow M^{n\times n}(\Bbb R)$ is a continuous mapping with $\operatorname{det} F(x)\geq \mu >0$. Next we show that $(*)$ is not valid if $n\geq 3$, $F\in L^\infty(\Omega )$ and $\operatorname{det} F(x)=1$, but does hold if $p=2$, $\Gamma =\partial \Omega $ and $F(x)$ is symmetric and positive definite in $\Omega $. (English)
Keyword: Korn's Inequality
Keyword: coercive inequalities
MSC: 26D10
MSC: 26D15
MSC: 35F15
MSC: 35J55
idZBL: Zbl 1098.35042
idMR: MR2045845
.
Date available: 2009-01-08T19:27:22Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119367
.
Reference: [1] Besov O.V.: On coercivity in nonisotropic Sobolev spaces.Math. USSR-Sbornik, vol. 2 (1967), no. 4, 521-534. Zbl 0169.47101
Reference: [2] Calderón A.P., Zygmund A.: On singular integrals.Amer. J. Math. 78 (1956), 289-309. MR 0084633
Reference: [3] Chen W., Jost J.: A Riemann version of Korn's Inequality.Calc. Var. (2001).
Reference: [4] Ciarlet P.G.: Mathematical Elasticity, Volume I: Three-dimensional Elasticity.North-Holland, 1988. Zbl 0648.73014, MR 0936420
Reference: [5] Kałamajska A.: Coercive inequalities on weighted Sobolev spaces.Coll. Math. LXVI (1994), 309-318. MR 1268073
Reference: [6] Maz'ya V.G.: Sobolev Spaces.Springer, 1985. Zbl 1152.46002, MR 0817985
Reference: [7] Mikhlin S.G.: Multidimensional singular integrals and integral equations.Pergamon Press, 1965. Zbl 0129.07701, MR 0185399
Reference: [8] Nečas J.: Sur les normes équivalentes dans $W^{(k)}_p(Ømega)$ et sur la coercivité des formes formellement positives.Séminaire de mathématiques supérieures, 1965. Fasc. 19: Équations aux dérivées partielles (1966), 101-128.
Reference: [9] Nečas J., Hlaváček I.: Mathematical Theory of Elastic and Elasto-plastic Bodies: An Introduction.Elsevier Scientific Publishing Company, 1981. MR 0600655
Reference: [10] Neff P.: On Korn's First Inequality with nonconstant coefficients.Proc. Roy. Soc. Edinburgh 132A (2002), 221-243. MR 1884478
Reference: [11] Neff P.: A Korn's First Inequality with $W^{1,4}(Ømega)$-coefficients.preprint.
Reference: [12] Neff P.: Local existence and uniqueness for quasistatic finite plasticity with grain boundary relaxation.preprint. Zbl 1072.74013, MR 2126571
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_44-2003-1_5.pdf 255.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo