Previous |  Up |  Next

Article

Title: Estimation functions and uniformly most powerful tests for inverse Gaussian distribution (English)
Author: Vladimirescu, Ion
Author: Tunaru, Radu
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 44
Issue: 1
Year: 2003
Pages: 153-164
.
Category: math
.
Summary: The aim of this article is to develop estimation functions by confidence regions for the inverse Gaussian distribution with two parameters and to construct tests for hypotheses testing concerning the parameter $\lambda $ when the mean parameter $\mu $ is known. The tests constructed are uniformly most powerful tests and for testing the point null hypothesis it is also unbiased. (English)
Keyword: inverse Gaussian distribution
Keyword: estimation functions
Keyword: uniformly most powerful test
Keyword: unbiased test
MSC: 62F03
MSC: 62F25
idZBL: Zbl 1127.62314
idMR: MR2045852
.
Date available: 2009-01-08T19:28:12Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119374
.
Reference: [1] Ter Berg P.: Two pragmatic approaches to loglinear claim cost analysis.Astin Bulletin 11 77-90. MR 0611038
Reference: [2] Ter Berg P.: Deductibles and the inverse Gaussian distribution.Astin Bulletin 24 2 319-323.
Reference: [3] Chhikara R.S., Folks J.L.: Estimation of the inverse Gaussian distribution function.J. Amer. Statist. Assoc. 69 , 345 2500-254. Zbl 0282.62026
Reference: [4] Chhikara R.S., Folks J.L.: The Inverse Gaussian Distribution: Theory, Methodology and Applications.New York, Marcel Dekker. Zbl 0701.62009
Reference: [5] Edgeman R., Scott R., Pavur R.: A modified Kolmogorov-Smirnov test for the inverse Gaussian distribution with unknown parameters.Commun. Statist.- Simula. 17 1203-1212.
Reference: [6] Essam K. Al Hussaini, Nagi S. Abd-El-Hakim: Bivariate inverse Gaussian.Annals of Institute of Statistics and Mathematics 33 , Part A 57-66. MR 0613202
Reference: [7] Gunes H., Dietz D.C., Auclair P., Moore A.: Modified goodness-of-fit tests for the inverse Gaussian distribution.Computational Statistics and Data Analysis 24 63-77. Zbl 0900.62231
Reference: [8] Hadwiger H.: Naturliche Ausscheidefunktionen fur Gesamtheiten und die Losung der Erneuerungsgleichung.Mitteilungen der Vereinigung schweizerischer Versicherungsmathematiker 40 31-39. MR 0004465
Reference: [9] Henze N., Klar B.: Goodness-of-Fit Tests for the inverse Gaussian distribution based on the empirical Laplace transform.Ann. Statist., forthcoming. Zbl 1012.62047, MR 1910185
Reference: [10] Lehmann E.L.: Testing Statistical Hypotheses.New York, Wiley. Zbl 1076.62018, MR 0852406
Reference: [11] Mergel V.: Test of goodness of fit for the inverse-gaussian distribution.Math. Commun. 4 191-195. Zbl 0946.62007, MR 1746381
Reference: [12] Pavur R., Edgeman R., Scott R.: Quadratic statistic for the goodness-of-fit test for the inverse Gaussian distribution.IEEE Trans. Reliab. 41 118-123.
Reference: [13] O'Reilly F., Rueda R.: Goodness-of-fit for the inverse Gaussian distribution.Canad. J. Statist. 20 387-397. Zbl 0765.62051, MR 1208351
Reference: [14] Rao C.R.: Linear Statistical Inference and Its Applications.New York, Wiley. Zbl 0256.62002, MR 0221616
Reference: [15] Schrodinger E.: Zur Theorie der Fall-und Steigversuche an Teilchen mit Brownscher Bewegung.Physikalische Zeitschrift 16 289-295.
Reference: [16] Seshadri V.: Inverse Gaussian Distributions.Oxford, Oxford University Press. Zbl 0758.62027
Reference: [17] Seshadri V.: The Inverse Gaussian Distribution - Statistical Theory and Applications.London, Springer. Zbl 0942.62011, MR 1622488
Reference: [18] Shuster J.: On the inverse Gaussian distribution.J. Amer. Statist. Assoc. 63 1514-1516. Zbl 0169.21004, MR 0235653
Reference: [19] Tweedie M.C.K.: Statistical properties of inverse Gaussian distributions I, II.Annals of Mathematical Statistics 28 362-377. Zbl 0086.35202, MR 0110132
Reference: [20] Wald, A.: Sequential Analysis.Wiley, New York. Zbl 0091.14602, MR 0020764
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_44-2003-1_12.pdf 219.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo