Title:
|
Extension of multisequences and countably uniradial classes of topologies (English) |
Author:
|
Dolecki, Szymon |
Author:
|
Starosolski, Andrzej |
Author:
|
Watson, Stephen |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
44 |
Issue:
|
1 |
Year:
|
2003 |
Pages:
|
165-181 |
. |
Category:
|
math |
. |
Summary:
|
It is proved that every non trivial continuous map between the sets of extremal elements of monotone sequential cascades can be continuously extended to some subcascades. This implies a result of Franklin and Rajagopalan that an Arens space cannot be continuously non trivially mapped to an Arens space of higher rank. As an application, it is proved that if for a filter $\Cal H$ on $\omega $, the class of $\Cal H$-radial topologies contains each sequential topology, then it includes the class of subsequential topologies. (English) |
Keyword:
|
sequential cascade |
Keyword:
|
multisequence |
Keyword:
|
subsequential topology |
Keyword:
|
countably uniradial |
Keyword:
|
Arens topologies of higher order |
MSC:
|
54A20 |
MSC:
|
54D55 |
MSC:
|
54G12 |
idZBL:
|
Zbl 1099.54024 |
idMR:
|
MR2045853 |
. |
Date available:
|
2009-01-08T19:28:19Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119375 |
. |
Reference:
|
[1] Aniskovič E.M.: On subspaces of sequential spaces.Soviet Math. Dokl. 28 202-205 (1981). MR 0646337 |
Reference:
|
[2] Boldjiev B., Malyhin V.: The sequentiality is equivalent to the $\Cal F$-Fréchet-Urysohn property.Comment. Math. Univ. Carolinae 31 23-25 (1990). MR 1056166 |
Reference:
|
[3] Dolecki S.: Convergence-theoretic methods in quotient quest.Topology Appl. 73 1-21 (1996). MR 1413721 |
Reference:
|
[4] Dolecki S., Greco G.H.: Topologically maximal pretopologies.Studia Math. 77 265-281 (1984). Zbl 0487.54003, MR 0745283 |
Reference:
|
[5] Dolecki S., Mynard F.: Cascades and multifilters.Topology Appl. 104 53-65 (2000). Zbl 0953.54003, MR 1780898 |
Reference:
|
[6] Dolecki S., Mynard F.: Convergence-theoretic mechanisms behind product theorems.Topology Appl. 104 67-99 (2000). Zbl 0953.54002, MR 1780899 |
Reference:
|
[7] Dolecki S., Nogura T.: Two-fold theorem on Fréchetness of products.Czechoslovak Math. J. 49 (124) 421-429 (1999). Zbl 0949.54010, MR 1692508 |
Reference:
|
[8] Dolecki S., Nogura T.: Countably infinite products of sequential topologies.Math. Japonica 5 209-215 (2001). Zbl 0991.54028, MR 1885785 |
Reference:
|
[9] Dolecki S., Nogura T.: Sequential order of finite products of topologies.Topology Proc. 25 (2000), 105-127. Zbl 1026.54021, MR 1925680 |
Reference:
|
[10] Dolecki S., Sitou S.: Precise bounds for sequential order of products of some Fréchet topologies.Topology Appl. 84 61-75 (1998). MR 1611269 |
Reference:
|
[11] Dolecki S., Watson S.: Internal characterizations of subsequential topologies.to appear. |
Reference:
|
[12] Dolecki S., Watson S.: Maps between Arens spaces.to appear. |
Reference:
|
[13] Franklin S., Rajagopalan M.: On subsequential spaces.Topology Appl. 35 1-19 (1990). Zbl 0722.54021, MR 1049858 |
Reference:
|
[14] Fremlin D.: Sequential convergence in $C_p(X)$.Comment. Math. Univ. Carolinae 35 371-382 (1994). MR 1286585 |
Reference:
|
[15] Grimeisen G.: Gefilterte Summation von Filtern und iterierte Grenzeprozesse, I.Math. Annalen 141 318-342 (1960). MR 0120613 |
Reference:
|
[15] Grimeisen G.: Gefilterte Summation von Filtern und iterierte Grenzeprozesse, II.Math. Annalen 144 386-417 (1961). MR 0131259 |
Reference:
|
[17] Katětov M.: Products of filters.Comment. Math. Univ. Carolinae 9 173-189 (1968). MR 0250257 |
Reference:
|
[18] Katětov M.: On descriptive classes of functions.in Theory of Sets and Topology, Berlin, 1972. MR 0345060 |
Reference:
|
[19] Kratochvíl P.: Multisequences and measure.in General Topology and its Relations to Modern Analysis and Algebra, 1976. |
Reference:
|
[20] Kratochvíl P.: Multisequences and their structure in sequential spaces.in Convergence Structures, Akademie-Verlag, 1985. MR 0835487 |
Reference:
|
[21] Nyikos P.: Convergence in topology.in M. Hušek and J. van Mill, Eds, Recent Progress in General Topology, North-Holland, 1992. Zbl 0794.54004, MR 1229121 |
Reference:
|
[22] van Mill J.: An introduction to $\beta ømega$.in K. Kunnen and J. E. Vaughan, Eds, Handbook of Set-Theoretic Topology, North-Holland, 1988. Zbl 0555.54004 |
. |