Previous |  Up |  Next

Article

Title: Extension of multisequences and countably uniradial classes of topologies (English)
Author: Dolecki, Szymon
Author: Starosolski, Andrzej
Author: Watson, Stephen
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 44
Issue: 1
Year: 2003
Pages: 165-181
.
Category: math
.
Summary: It is proved that every non trivial continuous map between the sets of extremal elements of monotone sequential cascades can be continuously extended to some subcascades. This implies a result of Franklin and Rajagopalan that an Arens space cannot be continuously non trivially mapped to an Arens space of higher rank. As an application, it is proved that if for a filter $\Cal H$ on $\omega $, the class of $\Cal H$-radial topologies contains each sequential topology, then it includes the class of subsequential topologies. (English)
Keyword: sequential cascade
Keyword: multisequence
Keyword: subsequential topology
Keyword: countably uniradial
Keyword: Arens topologies of higher order
MSC: 54A20
MSC: 54D55
MSC: 54G12
idZBL: Zbl 1099.54024
idMR: MR2045853
.
Date available: 2009-01-08T19:28:19Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119375
.
Reference: [1] Aniskovič E.M.: On subspaces of sequential spaces.Soviet Math. Dokl. 28 202-205 (1981). MR 0646337
Reference: [2] Boldjiev B., Malyhin V.: The sequentiality is equivalent to the $\Cal F$-Fréchet-Urysohn property.Comment. Math. Univ. Carolinae 31 23-25 (1990). MR 1056166
Reference: [3] Dolecki S.: Convergence-theoretic methods in quotient quest.Topology Appl. 73 1-21 (1996). MR 1413721
Reference: [4] Dolecki S., Greco G.H.: Topologically maximal pretopologies.Studia Math. 77 265-281 (1984). Zbl 0487.54003, MR 0745283
Reference: [5] Dolecki S., Mynard F.: Cascades and multifilters.Topology Appl. 104 53-65 (2000). Zbl 0953.54003, MR 1780898
Reference: [6] Dolecki S., Mynard F.: Convergence-theoretic mechanisms behind product theorems.Topology Appl. 104 67-99 (2000). Zbl 0953.54002, MR 1780899
Reference: [7] Dolecki S., Nogura T.: Two-fold theorem on Fréchetness of products.Czechoslovak Math. J. 49 (124) 421-429 (1999). Zbl 0949.54010, MR 1692508
Reference: [8] Dolecki S., Nogura T.: Countably infinite products of sequential topologies.Math. Japonica 5 209-215 (2001). Zbl 0991.54028, MR 1885785
Reference: [9] Dolecki S., Nogura T.: Sequential order of finite products of topologies.Topology Proc. 25 (2000), 105-127. Zbl 1026.54021, MR 1925680
Reference: [10] Dolecki S., Sitou S.: Precise bounds for sequential order of products of some Fréchet topologies.Topology Appl. 84 61-75 (1998). MR 1611269
Reference: [11] Dolecki S., Watson S.: Internal characterizations of subsequential topologies.to appear.
Reference: [12] Dolecki S., Watson S.: Maps between Arens spaces.to appear.
Reference: [13] Franklin S., Rajagopalan M.: On subsequential spaces.Topology Appl. 35 1-19 (1990). Zbl 0722.54021, MR 1049858
Reference: [14] Fremlin D.: Sequential convergence in $C_p(X)$.Comment. Math. Univ. Carolinae 35 371-382 (1994). MR 1286585
Reference: [15] Grimeisen G.: Gefilterte Summation von Filtern und iterierte Grenzeprozesse, I.Math. Annalen 141 318-342 (1960). MR 0120613
Reference: [15] Grimeisen G.: Gefilterte Summation von Filtern und iterierte Grenzeprozesse, II.Math. Annalen 144 386-417 (1961). MR 0131259
Reference: [17] Katětov M.: Products of filters.Comment. Math. Univ. Carolinae 9 173-189 (1968). MR 0250257
Reference: [18] Katětov M.: On descriptive classes of functions.in Theory of Sets and Topology, Berlin, 1972. MR 0345060
Reference: [19] Kratochvíl P.: Multisequences and measure.in General Topology and its Relations to Modern Analysis and Algebra, 1976.
Reference: [20] Kratochvíl P.: Multisequences and their structure in sequential spaces.in Convergence Structures, Akademie-Verlag, 1985. MR 0835487
Reference: [21] Nyikos P.: Convergence in topology.in M. Hušek and J. van Mill, Eds, Recent Progress in General Topology, North-Holland, 1992. Zbl 0794.54004, MR 1229121
Reference: [22] van Mill J.: An introduction to $\beta ømega$.in K. Kunnen and J. E. Vaughan, Eds, Handbook of Set-Theoretic Topology, North-Holland, 1988. Zbl 0555.54004
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_44-2003-1_13.pdf 303.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo