Previous |  Up |  Next

Article

Title: Filling boxes densely and disjointly (English)
Author: Schröder, J.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 44
Issue: 1
Year: 2003
Pages: 187-196
.
Category: math
.
Summary: We effectively construct in the Hilbert cube $\Bbb H= [0,1]^\omega$ two sets $V, W \subset \Bbb H$ with the following properties: (a) $V \cap W = \emptyset $, (b) $V \cup W$ is discrete-dense, i.e. dense in ${[0,1]_D}^\omega $, where $[0,1]_D$ denotes the unit interval equipped with the discrete topology, (c) $V$, $W$ are open in $\Bbb H$. In fact, $V = \bigcup_{\Bbb N} V_i$, $W = \bigcup_{\Bbb N} W_i$, where $V_i =\bigcup_0^{2^{i-1}-1}V_{ij}$, $W_i =\bigcup_0^{2^{i-1}-1}W_{ij}$. $V_{ij}$, $W_{ij}$ are basic open sets and $(0, 0, 0, \ldots) \in V_{ij}$, $(1, 1, 1, \ldots) \in W_{ij}$, (d) $V_i \cup W_i$, $i \in \Bbb N$ is point symmetric about $(1/2, 1/2, 1/2, \ldots)$. Instead of $[0,1]$ we could have taken any $T_4$-space or a digital interval, where the resolution (number of points) increases with $i$. (English)
Keyword: Hilbert cube
Keyword: discrete-dense
Keyword: disjoint
Keyword: disconnected
Keyword: covering
Keyword: constructive
Keyword: computation
Keyword: digital interval
Keyword: $T_4$-space
MSC: 05-04
MSC: 54-04
MSC: 54B10
idZBL: Zbl 1099.54011
idMR: MR2045855
.
Date available: 2009-01-08T19:28:34Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119377
.
Reference: [Sch98] Schröder J.: On sub-, pseudo- and quasimaximal spaces.Comment. Math. Univ. Carolinae 39.1 (1998), 198-206. MR 1623022
Reference: [Wat90] Watson St.: Powers of the Sierpinski space.Topology Appl. 35 (1990), 299-302. Zbl 0698.54013, MR 1058809
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_44-2003-1_15.pdf 406.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo