Previous |  Up |  Next

Article

Title: A canonical Ramsey-type theorem for finite subsets of $\Bbb N$ (English)
Author: Piguetová, Diana
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 44
Issue: 2
Year: 2003
Pages: 235-243
.
Category: math
.
Summary: T. Brown proved that whenever we color $\Cal P_{f} (\Bbb N)$ (the set of finite subsets of natural numbers) with finitely many colors, we find a monochromatic structure, called an arithmetic copy of an $\omega $-forest. In this paper we show a canonical extension of this theorem; i.e\. whenever we color $\Cal P_{f}(\Bbb N)$ with arbitrarily many colors, we find a canonically colored arithmetic copy of an $\omega $-forest. The five types of the canonical coloring are determined. This solves a problem of T. Brown. (English)
Keyword: canonical coloring
Keyword: forests
Keyword: van der Waerden's theorem
Keyword: arithmetic progression
MSC: 05C55
MSC: 05D05
MSC: 05D10
idZBL: Zbl 1099.05510
idMR: MR2026161
.
Date available: 2009-01-08T19:29:02Z
Last updated: 2020-02-20
Stable URL: http://hdl.handle.net/10338.dmlcz/119383
.
Reference: [BeLe-96] Bergelson V., Leibman A.: Polynomial extension of van der Waerden's and Szemerédi's theorems.J. Amer. Math. Soc. 9 (1996), 3 725-753. MR 1325795, 10.1090/S0894-0347-96-00194-4
Reference: [BeLe-99] Bergelson V., Leibman A.: Set-polynomials and polynomial extension of Hales-Jewett Theorem.Ann. Math. 150 (1999), 33-75. MR 1715320, 10.2307/121097
Reference: [Br-00] Brown T.C.: Monochromatic forests of finite subsets of $\Bbb N$.Integers: Electronic Journal of Combinatorial Number Theory 0 (2000). MR 1759422
Reference: [ErGr-80] Erdös P., Graham R.L.: Old and New Problems and Results in Combinatorial Number Theory.L'Enseignement Mathématique, Genève, 1980. MR 0592420
Reference: [Ne-95] Nešetřil J.: Ramsey Theory.in Handbook of Combinatorics, editors R. Graham, M. Grötschel and L. Lovász, Elsevier Science B.V., 1995, pp.1333-1403. MR 1373681
Reference: [NeRo-84] Nešetřil J., Rödl V.: Combinatorial partitions of finite posets and lattices-Ramsey lattices.Algebra Universalis 19 (1984), 106-119. MR 0748915, 10.1007/BF01191498
Reference: [Ra-86] Rado R.: Note on canonical partitions.Bull. London Math. Soc. 18 (1986), 123-126. Zbl 0584.05006, MR 0818813, 10.1112/blms/18.2.123
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_44-2003-2_5.pdf 191.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo