Previous |  Up |  Next

Article

Title: Completeness properties of function rings in pointfree topology (English)
Author: Banaschewski, Bernhard
Author: Hong, Sung Sa
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 44
Issue: 2
Year: 2003
Pages: 245-259
.
Category: math
.
Summary: This note establishes that the familiar internal characterizations of the Tychonoff spaces whose rings of continuous real-valued functions are complete, or $\sigma$-comp\-lete, as lattice ordered rings already hold in the larger setting of pointfree topology. In addition, we prove the corresponding results for rings of integer-valued functions. (English)
Keyword: frame of reals
Keyword: lattice ordered rings of real valued continuous functions and integer valued continuous functions
Keyword: extremally disconnected frame
Keyword: basically disconnected frame
Keyword: cozero map
MSC: 06D22
MSC: 54C30
MSC: 54G05
idZBL: Zbl 1098.06006
idMR: MR2026162
.
Date available: 2009-01-08T19:29:08Z
Last updated: 2020-02-20
Stable URL: http://hdl.handle.net/10338.dmlcz/119384
.
Reference: [1] Ball R.N., Walters-Wayland J.L.: $C$- and $C^*$-embedded sublocales.Dissertationes Math. 412 (2002). Zbl 1012.54025, MR 1952051
Reference: [2] Banaschewski B.: Universal zero-dimensional compactifications.In Categorical Topology and its Relation to Analysis, Algebra, and Combinatorics, Prague, Czechoslovakia, August 1988, World Scientific, Singapore, 1989, pp. 257-269. MR 1047906
Reference: [3] Banaschewski B.: The frame envelope of a $\sigma$-frame.Quaest. Math. 16 (1993), 51-60. Zbl 0779.06009, MR 1217474
Reference: [4] Banaschewski B.: The real numbers in pointfree topology.Textos de Matemática Série B, No. 12, Departamento de Matemática da Universidade de Coimbra, 1997. Zbl 0891.54009, MR 1621835
Reference: [5] Banaschewski B., Mulvey C.J.: Stone-Čech compactification of locales II.J. Pure Appl. Algebra 33 (1984), 107-122. Zbl 0549.54017, MR 0754950, 10.1016/0022-4049(84)90001-X
Reference: [6] Gillman L., Jerison M.: Rings of continuous functions.D. Van Nostrand, 1960. Zbl 0327.46040, MR 0116199
Reference: [7] Johnstone P.T.: Conditions related to De Morgan's law.In Applications of Sheaves, Proceedings, Durham, 1977, Springer LNM 753 (1979), pp. 479-491. Zbl 0445.03041, MR 0555556
Reference: [8] Johnstone P.T.: Stone Spaces, Cambridge Studies in Advanced Mathematics 3, Cambridge University Press, 1982.. MR 0698074
Reference: [9] Nakano H.: Über das System aller stetigen Funktionen auf einen topologischen Raum.Proc. Imp. Acad. Tokyo 17 (1941), 308-310. MR 0014173
Reference: [10] Stone M.H.: Boundedness properties in function lattices.Canad. J. Math. 1 (1949), 176-186. Zbl 0032.16901, MR 0029091, 10.4153/CJM-1949-016-5
Reference: [11] Vickers S.: Topology via Logic.Cambridge Tracts in Theor. Comp. Sci. No 5, Cambridge University Press, 1985. Zbl 0922.54002, MR 1002193
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_44-2003-2_6.pdf 228.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo