Previous |  Up |  Next

Article

Title: Spaces $X$ in which all prime $z$-ideals of $C(X)$ are minimal or maximal (English)
Author: Henriksen, Melvin
Author: Martínez, Jorge
Author: Woods, R. Grant
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 44
Issue: 2
Year: 2003
Pages: 261-294
.
Category: math
.
Summary: Quasi $P$-spaces are defined to be those Tychonoff spaces $X$ such that each prime $z$-ideal of $C(X)$ is either minimal or maximal. This article is devoted to a systematic study of these spaces, which are an obvious generalization of $P$-spaces. The compact quasi $P$-spaces are characterized as the compact spaces which are scattered and of Cantor-Bendixson index no greater than 2. A thorough account of locally compact quasi $P$-spaces is given. If $X$ is a cozero-complemented space and every nowhere dense zeroset is a $z$-embedded $P$-space, then $X$ is a quasi $P$-space. Conversely, if $X$ is a quasi $P$-space and $F$ is a nowhere dense $z$-embedded zeroset, then $F$ is a $P$-space. On the other hand, there are examples of countable quasi $P$-spaces with no $P$-points at all. If a product $X\times Y$ is normal and quasi $P$, then one of the factors must be a $P$-space. Conversely, if one of the factors is a compact quasi $P$-space and the other a $P$-space then the product is quasi $P$. If $X$ is normal and $X$ and $Y$ are cozero-complemented spaces and $f:X\longrightarrow Y$ is a closed continuous surjection which has the property that $f^{-1}(Z)$ is nowhere dense for each nowhere dense zeroset $Z$, then if $X$ is quasi $P$, so is $Y$. The converse fails even with more stringent assumptions on the map $f$. The paper then closes with a number of open questions, amongst which the most glaring is whether the free union of quasi $P$-spaces is always quasi $P$. (English)
Keyword: quasi $P$-space
Keyword: $P$-space
Keyword: scattered space
Keyword: Cantor-Bendixson derivatives
Keyword: \newline nodec space
Keyword: quasinormality
MSC: 06F25
MSC: 54C10
MSC: 54C40
MSC: 54D45
MSC: 54G10
MSC: 54G12
MSC: 54G99
idZBL: Zbl 1098.54013
idMR: MR2026163
.
Date available: 2009-01-08T19:29:13Z
Last updated: 2020-02-20
Stable URL: http://hdl.handle.net/10338.dmlcz/119385
.
Reference: [BSV81] Balcar B., Simon P., Vojtáš P.: Refinement properties and extensions of filters in boolean algebras.Trans. Amer. Math. Soc. 267 (1981), 265-283. MR 0621987, 10.1090/S0002-9947-1981-0621987-0
Reference: [BH87] Ball R.N., Hager A.W.: Archimedean kernel-distinguishing extensions of archimedean $\ell$-groups with weak unit.Indian J. Math. 29 (3) (1987), 351-368. MR 0971646
Reference: [BKW77] Bigard A., Keimel K., Wolfenstein S.: Groupes et Anneaux Réticulés.Lecture Notes in Math. 608, Springer-Verlag, Berlin-Heidelberg-New York, 1977. Zbl 0384.06022, MR 0552653
Reference: [Bl76] Blair R.L.: Spaces in which special sets are $z$-embedded.Canad. J. Math. 28 (1976), 673-690. Zbl 0359.54009, MR 0420542, 10.4153/CJM-1976-068-9
Reference: [Bu80] Burke D.: Closed Mappings.Surveys in Gen. Topology, Academic Press, New York, 1980, pp.1-32. Zbl 0476.54017, MR 0564098
Reference: [CH70] Comfort W., Hager A.: Estimates for the number of continuous functions.Trans. Amer. Math. Soc. 150 (1970), 619-631. MR 0263016, 10.1090/S0002-9947-1970-0263016-X
Reference: [CM90] Conrad P., Martinez J.: Complemented lattice-ordered groups.Indag. Math. (N.S.) 1 (1990), 281-297. Zbl 0735.06006, MR 1075880, 10.1016/0019-3577(90)90019-J
Reference: [D95] Darnel M.: Theory of Lattice-Ordered Groups.Pure & Appl. Math. 187, Marcel Dekker, New York, 1995. Zbl 0810.06016, MR 1304052
Reference: [DF99] Dummit D.S., Foote R.M.: Abstract Algebra.2nd edition, Prentice Hall, 1999. Zbl 1037.00003, MR 1138725
Reference: [vD93] van Douwen E.: Applications of maximal topologies.Topology Appl. 51 (1993), 125-139. Zbl 0845.54028, MR 1229708, 10.1016/0166-8641(93)90145-4
Reference: [vDP79] van Douwen E., Pryzmusiński T.: First countable and countable spaces all compactifications of which contain $\beta \Bbb N$, Fund. Math..52 (1979), 229-234. MR 0532957, 10.4064/fm-102-3-229-234
Reference: [En89] Engelking R.: General Topology.Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [GJ60] Gillman L., Jerison M.: Quotient fields of residue class rings of function rings.Illinois J. Math. 4 (1960), 425-436. Zbl 0098.30701, MR 0124727, 10.1215/ijm/1255456059
Reference: [GJ76] Gillman L., Jerison M.: Rings of Continuous Functions.Grad. Texts Math. 43, Springer-Verlag, Berlin-Heidelberg-New York, 1976. Zbl 0327.46040, MR 0407579
Reference: [HM93] Hager A., Martinez J.: Fraction-dense algebras and spaces.Canad. J. Math. 45 (1993), 977-996. Zbl 0795.06017, MR 1239910, 10.4153/CJM-1993-054-6
Reference: [HJ65] Henriksen M., Jerison M.: The space of minimal prime ideals of a commutative ring.Trans. Amer. Math. Soc. 115 (1965), 110-130. Zbl 0147.29105, MR 0194880, 10.1090/S0002-9947-1965-0194880-9
Reference: [HLMW94] Henriksen M., Larson S., Martinez J., Woods R.G.: Lattice-ordered algebras that are subdirect products of valuation domains.Trans. Amer. Math. Soc. 345 1 (September 1994), 195-221. Zbl 0817.06014, MR 1239640, 10.1090/S0002-9947-1994-1239640-0
Reference: [HVW87] Henriksen M., Vermeer J., Woods R.G.: Quasi-$F$ covers of Tychonoff spaces.Trans. Amer. Math. Soc. 303 (2) (1987), 779-803. Zbl 0653.54025, MR 0902798
Reference: [Ki01] Kimber C.: $m$-Quasinormal $f$-rings.J. Pure Appl. Algebra 158 (2001), 197-223. Zbl 0987.06017, MR 1822841, 10.1016/S0022-4049(00)00061-X
Reference: [Ko89] Koppelberg S.: Handbook of Boolean Algebras, I..J.D. Monk, Ed., with R. Bonnet; Elsevier, Amsterdam-New York-Oxford-Tokyo, 1989. MR 0991565
Reference: [La95] Larson S.: A characterization of $f$-rings in which the sum of semiprime $\ell$-ideals is semiprime and its consequences.Comm. Algebra 23 (1995), 14 5461-5481. Zbl 0847.06007, MR 1363616, 10.1080/00927879508825545
Reference: [La97a] Larson S.: Quasi-normal $f$-rings.in Proc. Ord. Alg. Structures (Curaçao, 1995), W.C. Holland & J. Martinez, Eds., Kluwer Acad. Publ., Dordrecht, 1997, pp.261-275. Zbl 0872.06013, MR 1445116
Reference: [La97b] Larson S.: $f$-Rings in which every maximal ideal contains finitely many minimal prime ideals.Comm. Algebra 25 (1997), 3859-3888. Zbl 0952.06026, MR 1481572, 10.1080/00927879708826092
Reference: [Le77] Levy R.: Almost $P$-spaces.Canad. J. Math. 29 (1977), 284-288. Zbl 0342.54032, MR 0464203, 10.4153/CJM-1977-030-7
Reference: [LR81] Levy R., Rice M.: Normal spaces and the $G_{\delta}$-topology.Colloq. Math. 44 (1981), 227-240. MR 0652582, 10.4064/cm-44-2-227-240
Reference: [Mn69] Mandelker M.: $F'$-spaces and $z$-embedded subspaces.Pacific J. Math. 28 (1969), 615-621. Zbl 0172.47903, MR 0240782, 10.2140/pjm.1969.28.615
Reference: [MR69] Mioduszewski J., Rudolph L.: $H$-closed and extremally disconnected Hausdorff spaces.Dissertationes Math. LXVI (1969, Warsaw).
Reference: [Mo70] Montgomery R.: Structures determined by prime ideals of rings of functions.Trans. Amer. Math. Soc. 147 (1970), 367-380. Zbl 0222.54014, MR 0256174, 10.1090/S0002-9947-1970-0256174-4
Reference: [Mo73] Montgomery R.: The mapping of prime $z$-ideals.Symp. Math. 17 (1973), 113-124. MR 0440495
Reference: [Mr70] Mrowka S.: Some comments on the author's example of a non-R-compact space.Bull. Acad. Polon. Sci., Ser. Math. Astronom. Phys. 18 (1970), 443-448. MR 0268852
Reference: [O80] Oxtoby J.: Measure and Category.2nd edition, Springer-Verlag, Berlin-Heidelberg-New York, 1980. Zbl 0435.28011, MR 0584443
Reference: [PW88] Porter J., Woods R.g.: Extensions and Absolutes of Hausdorff Spaces.Springer-Verlag, Berlin-Heidelberg-New York, 1988. Zbl 0652.54016, MR 0918341
Reference: [vRS82] van Rooij A., Shikof W.: A Second Course in Real Analysis.Cambridge Univ. Press, Cambridge, England, 1982.
Reference: [Se59] Semadeni Z.: Sur les ensembles clairsemés.Rozprawy Mat. 19 (1959), Warsaw. Zbl 0137.16002, MR 0107849
Reference: [Se71] Semadeni Z.: Banach Spaces of Continuous Functions.Polish Scientific Publishers, Warsaw, 1971. Zbl 0478.46014, MR 0296671
Reference: [T68] Telgársky R.: Total paracompactness and paracompact dispersed spaces.Bull. Acad. Polon. Sci. 16 (1968), 567-572. MR 0235517
Reference: [Ve73] Veksler A.G.: $P'$-points, $P'$-sets and $P'$-spaces. A new class of order-continuous measures and functionals.Soviet Math. Dokl. 14 (1973), 1440-1445. MR 0341447
Reference: [W75] Weir M.: Hewitt-Nachbin Spaces.North Holland Publ. Co., Amsterdam, 1975. Zbl 0314.54002, MR 0514909
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_44-2003-2_7.pdf 382.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo