Previous |  Up |  Next

Article

Keywords:
star-Lindelöf space; absolutely star-Lindelöf space
Summary:
In this paper, we prove the following two statements: (1) There exists a discretely absolutely star-Lindelöf Tychonoff space having a regular-closed subspace which is not CCC-Lindelöf. (2) Every Hausdorff (regular, Tychonoff) linked-Lindelöf space can be represented in a Hausdorff (regular, Tychonoff) absolutely star-Lindelöf space as a closed $G_{\delta}$ subspace.
References:
[1] Bonanzinga M.: Star-Lindelöf and absolutely star-Lindelöf spaces. Questions Answers Gen. Topology 16 (1998), 79-104. MR 1642032 | Zbl 0931.54019
[2] Bonanzinga M., Matveev M.V.: Closed subspaces of star-Lindelöf and related spaces. to appear in East-West J. Math. MR 1825453 | Zbl 0997.54035
[3] Bonanzinga M., Matveev M.V.: Products of star-Lindelöf and related spaces. Houston J. Math. 27 (2001), 45-57. MR 1843911 | Zbl 0983.54006
[4] van Douwen E.K., Reed G.M., Roscoe A.W., Tree I.J.: Star covering properties. Topology Appl. 39 (1991), 71-103. MR 1103993 | Zbl 0743.54007
[5] Engelking R.: General Topology, Revised and completed edition. Heldermann Verlag Berlin (1989). MR 1039321
[6] Matveev M.V.: Absolutely countably compact spaces. Topology Appl. 58 (1994), 81-92. MR 1280711 | Zbl 0801.54021
[7] Matveev M.V.: A survey on star-covering properties. Topology Atlas preprint No. 330 (1998).
[8] Song Y.-K.: Remarks on star-Lindelöf spaces. Questions Answers Gen. Topology 20 (2002), 49-51. MR 1910431 | Zbl 1006.54032
[9] Song Y.-K., Shi W.-X.: Closed subspaces of absolutely star-Lindelöf spaces. to appear in Houston J. Math. MR 2084912
[10] Vaughan J.E.: On the product of a compact space with an absolutely countably compact space. Annals of the New York Acad. Sci. 788 (1996), 203-208. MR 1460834 | Zbl 0917.54023
[11] Vaughan J.E.: Absolute countable compactness and property $(a)$. Talk at 1996 Praha symposium on General Topology.
Partner of
EuDML logo