Previous |  Up |  Next

Article

Title: Biharmonic Green domains in a Riemannian manifold (English)
Author: Othman, S. I.
Author: Anandam, V.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 44
Issue: 2
Year: 2003
Pages: 359-365
.
Category: math
.
Summary: Let $R$ be a Riemannian manifold without a biharmonic Green function defined on it and $\Omega $ a domain in $R$. A necessary and sufficient condition is given for the existence of a biharmonic Green function on $\Omega $. (English)
Keyword: biharmonic Green functions
MSC: 31B30
MSC: 31C12
idZBL: Zbl 1127.31301
idMR: MR2026170
.
Date available: 2009-01-08T19:29:48Z
Last updated: 2020-02-20
Stable URL: http://hdl.handle.net/10338.dmlcz/119392
.
Reference: [1] Anandam V.: Biharmonic Green functions in a Riemannian manifold.Arab J. Math. Sc. 4 (1998), 39-45. Zbl 0942.31005, MR 1679626
Reference: [2] Anandam V., Damlakhi M.: Biharmonic Green domains in $\Bbb R^n$.Hokkaido Math. J. 27 (1998), 669-680. MR 1662962, 10.14492/hokmj/1351001468
Reference: [3] Anandam V.: Biharmonic classification of harmonic spaces.Rev. Roumaine Math. Pures Appl. 45 (2000), 383-395. Zbl 0990.31003, MR 1840160
Reference: [4] Brelot M.: Fonctions sousharmoniques associées à une mesure.Stud. Cerc. Şti. Mat. Iaşi 2 (1951), 114-118. Zbl 0081.31601, MR 0041989
Reference: [5] Brelot M.: Axiomatique des fonctions harmoniques.Les presses de l'Université de Montréal, 1966. Zbl 0148.10401, MR 0247124
Reference: [6] Loeb P.A.: An axiomatic treatment of pairs of elliptic differential equations.Ann. Inst. Fourier 16 (1966), 167-208. Zbl 0172.15101, MR 0227455, 10.5802/aif.240
Reference: [7] Othman S.I., Anandam V.: Liouville-Picard theorem in harmonic spaces.Hiroshima Math. J. 28 (1998), 501-506. Zbl 0915.31008, MR 1657539, 10.32917/hmj/1206126679
Reference: [8] Sario L., Nakai M., Wang C., Chung L.O.: Classification theory of Riemannian manifolds.Lecture Notes in Math. 605, Springer-Verlag, 1977. Zbl 0355.31001, MR 0508005
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_44-2003-2_14.pdf 173.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo