Previous |  Up |  Next

Article

Title: Relative normality and product spaces (English)
Author: Hoshina, Takao
Author: Sokei, Ryoken
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 44
Issue: 3
Year: 2003
Pages: 515-524
.
Category: math
.
Summary: Arhangel'ski\u{\i} defines in [Topology Appl. 70 (1996), 87--99], as one of various notions on relative topological properties, strong normality of $A$ in $X$ for a subspace $A$ of a topological space $X$, and shows that this is equivalent to normality of $X_A$, where $X_A$ denotes the space obtained from $X$ by making each point of $X \setminus A$ isolated. In this paper we investigate for a space $X$, its subspace $A$ and a space $Y$ the normality of the product $X_A \times Y$ in connection with the normality of $(X\times Y)_{(A\times Y)}$. The cases for paracompactness, more generally, for $\gamma$-paracompactness will also be discussed for $X_A\times Y$. As an application, we prove that for a metric space $X$ with $A \subset X$ and a countably paracompact normal space $Y$, $X_A \times Y$ is normal if and only if $X_A \times Y$ is countably paracompact. (English)
Keyword: strongly normal in
Keyword: normal
Keyword: $\gamma$-paracompact
Keyword: product spaces
Keyword: \newline weak $C$-embedding
MSC: 54B05
MSC: 54B10
MSC: 54C20
MSC: 54C45
MSC: 54D15
MSC: 54D20
idZBL: Zbl 1097.54013
idMR: MR2025817
.
Date available: 2009-01-08T19:30:48Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119405
.
Reference: [1] Alas O.T.: On a characterization of collectionwise normality.Canad. Math. Bull. 14 (1971), 13-15. Zbl 0209.53901, MR 0296886
Reference: [2] Arhangel'skiĭ A.V.: Relative topological properties and relative topological spaces.Topology Appl. 70 (1996), 87-99. MR 1397067
Reference: [3] Bing R.H.: Metrization of topological spaces.Canad. Math. J. 5 (1951), 175-186. Zbl 0042.41301, MR 0043449
Reference: [4] Burke D.K., Pol R.: Products of Michael spaces and completely metrizable spaces.Proc. Amer. Math. Soc. 129 (2000), 1535-1544. MR 1712941
Reference: [5] Costantini C., Marcone A.: Extensions of functions which preserve the continuity on the original domain.Topology Appl. 103 (2000), 131-153. Zbl 0986.54025, MR 1758790
Reference: [6] Engelking R.: General Topology.Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [7] Hoshina T.: Products of normal spaces with Lašnev spaces.Fund. Math. 124 (1984), 143-153. Zbl 0567.54006, MR 0774506
Reference: [8] Hoshina T.: Normality of product spaces.II, in K. Morita and J. Nagata, eds., Topics in General Topology, North-Holland, Amsterdam, 1989, pp.121-160. Zbl 0699.54004, MR 1053195
Reference: [9] Hoshina T., Yamazaki K.: Weak $C$-embedding and $P$-embedding, and product spaces.Topology Appl. 125 (2002), 233-247. Zbl 1013.54006, MR 1933574
Reference: [10] Ishii T.: On product spaces and product mappings.J. Math. Soc. Japan 18 (1966), 166-181. Zbl 0151.29901, MR 0193610
Reference: [11] Kodama Y.: On subset theorems and the dimension of products.Amer. J. Math. 106 (1969), 486-498. Zbl 0183.27702, MR 0243517
Reference: [12] Michael E.: The product of a normal space and a metric space need not be normal.Bull. Amer. Math. Soc. 69 (1963), 375-376. Zbl 0114.38904, MR 0152985
Reference: [13] Morita K.: Products of normal spaces with metric spaces.{rm II}, Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A, 8 (1962), 87-92. Zbl 0121.39402, MR 0166761
Reference: [14] Morita K.: Note on products of normal spaces with metric spaces.unpublished.
Reference: [15] Morita K.: On the dimension of the product of topological spaces.Tsukuba J. Math. 1 (1977), 1-6. Zbl 0403.54021, MR 0474230
Reference: [16] Rudin M.E., Starbird M.: Products with a metric factor.General Topology Appl. 5 (1975), 235-348. Zbl 0305.54010, MR 0380709
Reference: [17] Vaughan J.E.: Non-normal products of $ømega_\mu$-metrizable spaces.Proc. Amer. Math. Soc. 51 (1975), 203-208. MR 0370464
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_44-2003-3_10.pdf 224.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo