Title:
|
Relative normality and product spaces (English) |
Author:
|
Hoshina, Takao |
Author:
|
Sokei, Ryoken |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
44 |
Issue:
|
3 |
Year:
|
2003 |
Pages:
|
515-524 |
. |
Category:
|
math |
. |
Summary:
|
Arhangel'ski\u{\i} defines in [Topology Appl. 70 (1996), 87--99], as one of various notions on relative topological properties, strong normality of $A$ in $X$ for a subspace $A$ of a topological space $X$, and shows that this is equivalent to normality of $X_A$, where $X_A$ denotes the space obtained from $X$ by making each point of $X \setminus A$ isolated. In this paper we investigate for a space $X$, its subspace $A$ and a space $Y$ the normality of the product $X_A \times Y$ in connection with the normality of $(X\times Y)_{(A\times Y)}$. The cases for paracompactness, more generally, for $\gamma$-paracompactness will also be discussed for $X_A\times Y$. As an application, we prove that for a metric space $X$ with $A \subset X$ and a countably paracompact normal space $Y$, $X_A \times Y$ is normal if and only if $X_A \times Y$ is countably paracompact. (English) |
Keyword:
|
strongly normal in |
Keyword:
|
normal |
Keyword:
|
$\gamma$-paracompact |
Keyword:
|
product spaces |
Keyword:
|
\newline weak $C$-embedding |
MSC:
|
54B05 |
MSC:
|
54B10 |
MSC:
|
54C20 |
MSC:
|
54C45 |
MSC:
|
54D15 |
MSC:
|
54D20 |
idZBL:
|
Zbl 1097.54013 |
idMR:
|
MR2025817 |
. |
Date available:
|
2009-01-08T19:30:48Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119405 |
. |
Reference:
|
[1] Alas O.T.: On a characterization of collectionwise normality.Canad. Math. Bull. 14 (1971), 13-15. Zbl 0209.53901, MR 0296886 |
Reference:
|
[2] Arhangel'skiĭ A.V.: Relative topological properties and relative topological spaces.Topology Appl. 70 (1996), 87-99. MR 1397067 |
Reference:
|
[3] Bing R.H.: Metrization of topological spaces.Canad. Math. J. 5 (1951), 175-186. Zbl 0042.41301, MR 0043449 |
Reference:
|
[4] Burke D.K., Pol R.: Products of Michael spaces and completely metrizable spaces.Proc. Amer. Math. Soc. 129 (2000), 1535-1544. MR 1712941 |
Reference:
|
[5] Costantini C., Marcone A.: Extensions of functions which preserve the continuity on the original domain.Topology Appl. 103 (2000), 131-153. Zbl 0986.54025, MR 1758790 |
Reference:
|
[6] Engelking R.: General Topology.Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321 |
Reference:
|
[7] Hoshina T.: Products of normal spaces with Lašnev spaces.Fund. Math. 124 (1984), 143-153. Zbl 0567.54006, MR 0774506 |
Reference:
|
[8] Hoshina T.: Normality of product spaces.II, in K. Morita and J. Nagata, eds., Topics in General Topology, North-Holland, Amsterdam, 1989, pp.121-160. Zbl 0699.54004, MR 1053195 |
Reference:
|
[9] Hoshina T., Yamazaki K.: Weak $C$-embedding and $P$-embedding, and product spaces.Topology Appl. 125 (2002), 233-247. Zbl 1013.54006, MR 1933574 |
Reference:
|
[10] Ishii T.: On product spaces and product mappings.J. Math. Soc. Japan 18 (1966), 166-181. Zbl 0151.29901, MR 0193610 |
Reference:
|
[11] Kodama Y.: On subset theorems and the dimension of products.Amer. J. Math. 106 (1969), 486-498. Zbl 0183.27702, MR 0243517 |
Reference:
|
[12] Michael E.: The product of a normal space and a metric space need not be normal.Bull. Amer. Math. Soc. 69 (1963), 375-376. Zbl 0114.38904, MR 0152985 |
Reference:
|
[13] Morita K.: Products of normal spaces with metric spaces.{rm II}, Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A, 8 (1962), 87-92. Zbl 0121.39402, MR 0166761 |
Reference:
|
[14] Morita K.: Note on products of normal spaces with metric spaces.unpublished. |
Reference:
|
[15] Morita K.: On the dimension of the product of topological spaces.Tsukuba J. Math. 1 (1977), 1-6. Zbl 0403.54021, MR 0474230 |
Reference:
|
[16] Rudin M.E., Starbird M.: Products with a metric factor.General Topology Appl. 5 (1975), 235-348. Zbl 0305.54010, MR 0380709 |
Reference:
|
[17] Vaughan J.E.: Non-normal products of $ømega_\mu$-metrizable spaces.Proc. Amer. Math. Soc. 51 (1975), 203-208. MR 0370464 |
. |