Previous |  Up |  Next

Article

Title: The limit lemma in fragments of arithmetic (English)
Author: Švejdar, Vítězslav
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 44
Issue: 3
Year: 2003
Pages: 565-568
.
Category: math
.
Summary: The recursion theoretic limit lemma, saying that each function with a $\varSigma_{n+2}$ graph is a limit of certain function with a $\varDelta_{n+1}$ graph, is provable in $\text{\rm B}\Sigma_{n+1}$. (English)
Keyword: limit lemma
Keyword: fragments of arithmetic
Keyword: collection scheme
MSC: 03D20
MSC: 03D55
MSC: 03F30
idZBL: Zbl 1098.03067
idMR: MR2025821
.
Date available: 2009-01-08T19:31:08Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119409
.
Reference: [1] Clote P.: Partition relations in arithmetic.in C.A. DiPrisco, Ed., {Methods in Mathematical Logic}, Lecture Notes in Mathematics 1130, Springer, 1985, pp.32-68. Zbl 0567.03029, MR 0799036
Reference: [2] Hájek P., Kučera A.: On recursion theory in $I{\Sigma_1}$.J. Symbolic Logic 54 (1989), 576-589. MR 0997890
Reference: [3] Hájek P., Pudlák P.: Metamathematics of First Order Arithmetic.Springer, 1993. MR 1219738
Reference: [4] Kučera A.: An alternative, priority-free, solution to Post's problem.in J. Gruska, B. Rovan, and J. Wiedermann, Eds., {Mathematical Foundations of Computer Science 1986} (Bratislava, Czechoslovakia, August 25-29, 1986), Lecture Notes in Computer Science 233, Springer, 1986, pp.493-500. Zbl 0615.03033, MR 0874627
Reference: [5] Rogers H., Jr.: Theory of Recursive Functions and Effective Computability.McGraw-Hill, New York, 1967. Zbl 0256.02015, MR 0224462
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_44-2003-3_14.pdf 175.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo