Previous |  Up |  Next

Article

Title: Iterates of a class of discrete linear operators via contraction principle (English)
Author: Agratini, Octavian
Author: Rus, Ioan A.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 44
Issue: 3
Year: 2003
Pages: 555-563
.
Category: math
.
Summary: In this paper we are concerned with a general class of positive linear operators of discrete type. Based on the results of the weakly Picard operators theory our aim is to study the convergence of the iterates of the defined operators and some approximation properties of our class as well. Some special cases in connection with binomial type operators are also revealed. (English)
Keyword: linear positive operators
Keyword: contraction principle
Keyword: weakly Picard operators
Keyword: delta operators
Keyword: operators of binomial type
MSC: 41A36
MSC: 47H10
idZBL: Zbl 1096.41015
idMR: MR2025820
.
Date available: 2009-01-08T19:31:03Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119408
.
Reference: [1] Agratini O.: Binomial polynomials and their applications in Approximation Theory.Conferenze del Seminario di Matematica dell'Universita di Bari 281, Roma, 2001, pp.1-22. Zbl 1008.05010, MR 1850829
Reference: [2] Altomare F., Campiti M.: Korovkin-Type Approximation Theory and its Applications.de Gruyter Series Studies in Mathematics, Vol.17, Walter de Gruyter, Berlin-New York, 1994. Zbl 0924.41001, MR 1292247
Reference: [3] Cheney E.W., Sharma A.: On a generalization of Bernstein polynomials.Riv. Mat. Univ. Parma (2) 5 (1964), 77-84. Zbl 0146.08202, MR 0198074
Reference: [4] Kelisky R.P., Rivlin T.J.: Iterates of Bernstein polynomials.Pacific J. Math. 21 (1967), 511-520. Zbl 0177.31302, MR 0212457
Reference: [5] Lupaş A.: Approximation operators of binomial type.New developments in approximation theory (Dortmund, 1998), pp.175-198, International Series of Numerical Mathematics, Vol.132, Birkhäuser Verlag Basel/Switzerland, 1999. MR 1724919
Reference: [6] Mastroianni G., Occorsio M.R.: Una generalizzatione dell'operatore di Stancu.Rend. Accad. Sci. Fis. Mat. Napoli (4) 45 (1978), 495-511. MR 0549902
Reference: [7] Popoviciu T.: Remarques sur les polynômes binomiaux.Bul. Soc. Sci. Cluj (Roumanie) 6 (1931), 146-148 (also reproduced in Mathematica (Cluj) 6 (1932), 8-10). Zbl 0002.39801
Reference: [8] Rota G.-C., Kahaner D., Odlyzko A.: On the Foundations of Combinatorial Theory. VIII. Finite operator calculus.J. Math. Anal. Appl. 42 (1973), 685-760. Zbl 0267.05004, MR 0345826
Reference: [9] Rus I.A.: Weakly Picard mappings.Comment. Math. Univ. Carolinae 34 (1993), 4 769-773. Zbl 0787.54045, MR 1263804
Reference: [10] Rus I.A.: Picard operators and applications.Seminar on Fixed Point Theory, Babeş-Bolyai Univ., Cluj-Napoca, 1996. Zbl 1031.47035
Reference: [11] Rus I.A.: Generalized Contractions and Applications.University Press, Cluj-Napoca, 2001. Zbl 0968.54029, MR 1947742
Reference: [12] Sablonniere P.: Positive Bernstein-Sheffer operators.J. Approx. Theory 83 (1995), 330-341. Zbl 0835.41024, MR 1361533
Reference: [13] Stancu D.D.: Approximation of functions by a new class of linear polynomial operators.Rev. Roumaine Math. Pures Appl. 13 (1968), 8 1173-1194. Zbl 0167.05001, MR 0238001
Reference: [14] Stancu D.D., Occorsio M.R.: On approximation by binomial operators of Tiberiu Popoviciu type.Rev. Anal. Numér. Théor. Approx. 27 (1998), 1 167-181. Zbl 1007.41016, MR 1818225
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_44-2003-3_13.pdf 218.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo