Title:
|
Multiplicity of positive solutions for some quasilinear Dirichlet problems on bounded domains in $\Bbb R^n$ (English) |
Author:
|
Kandilakis, Dimitrios A. |
Author:
|
Lyberopoulos, Athanasios N. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
44 |
Issue:
|
4 |
Year:
|
2003 |
Pages:
|
645-658 |
. |
Category:
|
math |
. |
Summary:
|
We show that, under appropriate structure conditions, the quasilinear Dirichlet problem $$ \cases -\operatorname{div}(|\nabla u|^{p-2}\nabla u) =f(x,u), \quad & x\in\Omega, \ u=0, & x\in\partial\Omega, \endcases $$ where $\Omega $is a bounded domain in $\Bbb R^n$, $1<p<+\infty $, admits two positive solutions $u_{0}$, $u_{1}$ in $W_{0}^{1,p}(\Omega)$ such that $0<u_{0}\leq u_{1}$ in $\Omega $, while $u_{0}$ is a local minimizer of the associated Euler-Lagrange functional. (English) |
Keyword:
|
$p$-Laplacian |
Keyword:
|
positive solutions |
Keyword:
|
sub- and supersolutions |
Keyword:
|
local minimizers |
Keyword:
|
Palais-Smale condition |
MSC:
|
35J20 |
MSC:
|
35J60 |
MSC:
|
35J70 |
MSC:
|
47J30 |
idZBL:
|
Zbl 1105.35311 |
idMR:
|
MR2062881 |
. |
Date available:
|
2009-01-08T19:31:54Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119419 |
. |
Reference:
|
[1] Ambrosetti A., Azorero J.G., Peral I.: Multiplicity results for some nonlinear elliptic equations.J. Funct. Anal. 137 (1996), 219-242. Zbl 0852.35045, MR 1383017 |
Reference:
|
[2] Ambrosetti A., Azorero J.G., Peral I.: Existence and multiplicity results for some nonlinear elliptic equations: a survey.Rend. Matem., Ser. VII, 20 (2000), 167-198. Zbl 1011.35049, MR 1823096 |
Reference:
|
[3] Ambrosetti A., Brezis H., Cerami G.: Combined effects of concave and convex nonlinearities in some elliptic problems.J. Funct. Anal. 122 (1994), 519-543. Zbl 0805.35028, MR 1276168 |
Reference:
|
[4] Ambrosetti A., Rabinowitz P.: Dual variational methods in critical point theory and applications.J. Funct. Anal. 14 (1973), 349-381. Zbl 0273.49063, MR 0370183 |
Reference:
|
[5] Anane A.: Simplicité et isolation de la première valeur propre du p-laplacien avec poids.C.R.A.S. Paris Série I 305 (1987), 725-728. Zbl 0633.35061, MR 0920052 |
Reference:
|
[6] Azorero J.G., Alonso I.P.: Some results about the existence of a second positive solution in a quasilinear critical problem.Indiana Univ. Math. J. 43 3 (1994), 941-957. Zbl 0822.35048, MR 1305954 |
Reference:
|
[7] Azorero J.G., Alonso I.P., Manfredi J.J.: Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations.Comm. Contemp. Math. 2 3 (2000), 385-404. MR 1776988 |
Reference:
|
[8] Boccardo L., Escobedo M., Peral I.: A Dirichlet problem involving critical exponents.Nonlinear Anal. 24 (1995), 11 1639-1648. Zbl 0828.35042, MR 1328589 |
Reference:
|
[9] Brezis H., Nirenberg L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents.Comm. Pure Appl. Math. 36 (1983), 437-477. Zbl 0541.35029, MR 0709644 |
Reference:
|
[10] Brezis H., Nirenberg L.: $H^{1}$ versus $C^{1}$ local minimizers.C.R.A.S. Paris Série I 317 (1993), 465-472. MR 1239032 |
Reference:
|
[11] Drábek P., Hernandez J.: Existence and uniqueness of positive solutions for some quasilinear elliptic problems.Nonlinear Anal. 44 2 (2001), 189-204. Zbl 0991.35035, MR 1816658 |
Reference:
|
[12] Ghoussoub N., Preiss D.: A general mountain pass principle for locating and classifying critical points.Ann. Inst. H. Poincaré Anal. Non Linéaire 6 5 (1989), 321-330. Zbl 0711.58008, MR 1030853 |
Reference:
|
[13] Guedda M., Veron L.: Quasilinear elliptic equations involving critical Sobolev exponents.Nonlinear Anal. 13 8 (1989), 879-902. Zbl 0714.35032, MR 1009077 |
Reference:
|
[14] Ladyzhenskaya O., Uraltseva N.: Linear and Quasilinear Elliptic Equations.Academic Press, 1968. MR 0244627 |
Reference:
|
[15] Lieberman G.: Boundary regularity for solutions of degenerate elliptic equations.Nonlinear Anal. 12 (1988), 1203-1219. Zbl 0675.35042, MR 0969499 |
Reference:
|
[16] Moser J.: A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations.Comm. Pure Appl. Math. 13 (1960), 457-478. Zbl 0111.09301, MR 0170091 |
Reference:
|
[17] Sattinger D.H.: Monotone methods in nonlinear elliptic and parabolic boundary value problems.Indiana Univ. Math. J. 21 (1972), 979-1000. Zbl 0223.35038, MR 0299921 |
Reference:
|
[18] Vázquez J.L.: A strong maximum principle for some quasilinear elliptic equations.Appl. Math. Optim. 12 (1984), 191-202. MR 0768629 |
. |