Title:
|
Isoperimetric estimates for the first eigenvalue of the $p$-Laplace operator and the Cheeger constant (English) |
Author:
|
Kawohl, B. |
Author:
|
Fridman, V. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
44 |
Issue:
|
4 |
Year:
|
2003 |
Pages:
|
659-667 |
. |
Category:
|
math |
. |
Summary:
|
First we recall a Faber-Krahn type inequality and an estimate for $\lambda_p(\Omega)$ in terms of the so-called Cheeger constant. Then we prove that the eigenvalue $\lambda_p(\Omega)$ converges to the Cheeger constant $h(\Omega)$ as $p\to 1$. The associated eigenfunction $u_p$ converges to the characteristic function of the Cheeger set, i.e. a subset of $\Omega$ which minimizes the ratio $|\partial D|/|D|$ among all simply connected $D\subset\subset\Omega$. As a byproduct we prove that for convex $\Omega$ the Cheeger set $\omega$ is also convex. (English) |
Keyword:
|
isoperimetric estimates |
Keyword:
|
eigenvalue |
Keyword:
|
Cheeger constant |
Keyword:
|
$p$-Laplace operator |
Keyword:
|
$1$-Laplace operator |
MSC:
|
35J20 |
MSC:
|
35J70 |
MSC:
|
49Q20 |
MSC:
|
49R05 |
MSC:
|
49R50 |
MSC:
|
52A38 |
idZBL:
|
Zbl 1105.35029 |
idMR:
|
MR2062882 |
. |
Date available:
|
2009-01-08T19:31:59Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119420 |
. |
Reference:
|
[1] Alvino A., Ferone V., Trombetti G.: On the properties of some nonlinear eigenvalues.SIAM J. Math. Anal. 29 (1998), 437-451. Zbl 0908.35094, MR 1616519 |
Reference:
|
[2] Bhattacharia T.: A proof of the Faber-Krahn inequality for the first eigenvalue of the $p$-Laplacian.Ann. Mat. Pura Appl. Ser. 4 177 (1999), 225-240. MR 1747632 |
Reference:
|
[3] Belloni M., Kawohl B.: A direct uniqueness proof for equations involving the $p$-Laplace operator.Manuscripta Math. 109 (2002), 229-231. Zbl 1100.35032, MR 1935031 |
Reference:
|
[4] Belloni M., Kawohl B.: The pseudo-$p$-Laplace eigenvalue problem and viscosity solutions as $p\to \infty $.ESAIM COCV, to appear. Zbl 1092.35074, MR 2084254 |
Reference:
|
[5] Chavel I.: Isoperimetric Inequalities. Differential Geometric and Analytic Perspectives.Cambridge University Press, Cambridge, 2001. Zbl 0988.51019, MR 1849187 |
Reference:
|
[6] Cheeger J.: A lower bound for the smallest eigenvalue of the Laplacian.in: Problems in Analysis, A Symposium in Honor of Salomon Bochner, R.C. Gunning, Ed., Princeton Univ. Press, 1970, pp.195-199. Zbl 0212.44903, MR 0402831 |
Reference:
|
[7] Cicaclese M., Trombetti C.: Asymptotic behaviour of solutions to $p$-Laplacian equation.preprint No. 13, Univ. Napoli, 2002. |
Reference:
|
[8] Demengel F.: Theorémès d'existence pour des équations avec l'opérateur $1$-Laplacien, première valeur propre pour $-\Delta_1$.C.R. Acad. Sci. Paris, Ser. I 334 (2002), 1071-1076. Zbl 1142.35408, MR 1911649 |
Reference:
|
[9] Fridman V.: doctoral thesis, in preparation.. |
Reference:
|
[10] Giusti E.: Minimal Surfaces and Functions of Bounded Variation.Birkhäuser Verlag, Basel, 1984. Zbl 0825.49059, MR 0775682 |
Reference:
|
[11] Gonzales E., Massari U., Tamanini I.: On the regularity of boundaries of sets minimizing perimeter with a volume constraint.Indiana Univ. Math. J. 32 (1983), 25-37. MR 0684753 |
Reference:
|
[12] Huang Y.X.: On the eigenvalues of the $p$-Laplacian with varying $p$.Proc. Amer. Math. Soc. 125 (1997), 3347-3354. Zbl 0882.35087, MR 1403133 |
Reference:
|
[13] Juutinen P., Lindqvist P., Manfredi J.: The $\infty$-eigenvalue problem.Arch. Ration. Mech. Anal. 148 (1999), 89-105. Zbl 0947.35104, MR 1716563 |
Reference:
|
[14] Kawohl B.: Rearrangements and Convexity of Level Sets in PDE.Springer Lecture Notes in Math. 1150, 1985. Zbl 0593.35002, MR 0810619 |
Reference:
|
[15] Kawohl B.: On a family of torsional creep problems.J. reine angew. Math. 410 (1990), 1-22. Zbl 0701.35015, MR 1068797 |
Reference:
|
[16] Kawohl B., Stará J., Wittum G.: Analysis and numerical studies of a problem of shape design.Arch. Ration. Mech. Anal. 114 (1991), 349-363. MR 1100800 |
Reference:
|
[17] Kawohl B., Kutev N.: Global behavior of solutions to a parabolic mean curvature equation.Differ. Integral Equations 8 (1995), 1923-1946. MR 1348958 |
Reference:
|
[18] Kawohl B.: Some nonconvex shape optimization problems.in: Optimal Shape Design, B. Kawohl et al., Eds., Springer Lecture Notes in Math. 1740 (2000), 7-46. Zbl 0982.49024, MR 1804684 |
Reference:
|
[19] Lindqvist P.: On non-linear Rayleigh quotients.Potential Anal. 2 (1993), 199-218. |
Reference:
|
[20] Lindqvist P.: A note on the nonlinear Rayleigh quotient.in: Analysis, Algebra and Computers in Mathematical Research (Lulea 1992), M. Gyllenberg & L.E. Persson, Eds., Marcel Dekker Lecture Notes in Pure and Appl. Math. 156, 1994, pp. 223-231. Zbl 0805.35085, MR 1280948 |
Reference:
|
[21] Lindqvist P.: On a nonlinear eigenvalue problem.Padova, 2000, pp. 79-110. Zbl 0838.35094 |
Reference:
|
[22] Lefton L., Wei D.: Numerical approximation of the first eigenpair of the $p$-Laplacian using finite elements and the penalty method.Numer. Funct. Anal. Optim. 18 (1997), 389-399. Zbl 0884.65103, MR 1448898 |
Reference:
|
[23] Matei A.M.: First eigenvalue for the $p$-Laplace operator.Nonlinear Anal. TMA 39 (2000), 1051-1061. Zbl 0948.35090, MR 1735181 |
Reference:
|
[24] Marcellini P., Miller K.: Elliptic versus parabolic regularization for the equation of prescribed mean curvature.J. Differential Equations 137 (1997), 1-53. Zbl 0890.35046, MR 1451535 |
Reference:
|
[25] Payne L.E., Rayner M.E.: An isoperimetric inequality for the first eigenfunction in the fixed membrane problem.Z. Angew. Math. Phys. 23 (1972), 13-15. Zbl 0241.73080, MR 0313649 |
Reference:
|
[26] Payne L.E., Rayner M.E.: Some isoperimetric norm bound for solutions of the Helmholtz equation.Z. Angew. Math. Phys. 24 (1973), 105-110. MR 0324202 |
Reference:
|
[27] Sakaguchi S.: Concavity properties of solutions to some degenerate quasilinear elliptic Dirichlet problems.Ann. Sci. Norm. Sup. Pisa (IV) 14 (1987), 404-421. Zbl 0665.35025, MR 0951227 |
Reference:
|
[28] Shirakawa K.: Asymptotic convergence of $p$-Laplace equations with constraints as $p$ tends to $1$.Math. Methods Appl. Sci. 25 (2002), 771-793. MR 1906858 |
Reference:
|
[29] Stredulinsky E., Ziemer W.P.: Area minimizing sets subject to a volume constraint in a convex set.J. Geom. Anal. 7 (1997), 653-677. Zbl 0940.49025, MR 1669207 |
. |