Previous |  Up |  Next

Article

Title: Isoperimetric estimates for the first eigenvalue of the $p$-Laplace operator and the Cheeger constant (English)
Author: Kawohl, B.
Author: Fridman, V.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 44
Issue: 4
Year: 2003
Pages: 659-667
.
Category: math
.
Summary: First we recall a Faber-Krahn type inequality and an estimate for $\lambda_p(\Omega)$ in terms of the so-called Cheeger constant. Then we prove that the eigenvalue $\lambda_p(\Omega)$ converges to the Cheeger constant $h(\Omega)$ as $p\to 1$. The associated eigenfunction $u_p$ converges to the characteristic function of the Cheeger set, i.e. a subset of $\Omega$ which minimizes the ratio $|\partial D|/|D|$ among all simply connected $D\subset\subset\Omega$. As a byproduct we prove that for convex $\Omega$ the Cheeger set $\omega$ is also convex. (English)
Keyword: isoperimetric estimates
Keyword: eigenvalue
Keyword: Cheeger constant
Keyword: $p$-Laplace operator
Keyword: $1$-Laplace operator
MSC: 35J20
MSC: 35J70
MSC: 49Q20
MSC: 49R05
MSC: 49R50
MSC: 52A38
idZBL: Zbl 1105.35029
idMR: MR2062882
.
Date available: 2009-01-08T19:31:59Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119420
.
Reference: [1] Alvino A., Ferone V., Trombetti G.: On the properties of some nonlinear eigenvalues.SIAM J. Math. Anal. 29 (1998), 437-451. Zbl 0908.35094, MR 1616519
Reference: [2] Bhattacharia T.: A proof of the Faber-Krahn inequality for the first eigenvalue of the $p$-Laplacian.Ann. Mat. Pura Appl. Ser. 4 177 (1999), 225-240. MR 1747632
Reference: [3] Belloni M., Kawohl B.: A direct uniqueness proof for equations involving the $p$-Laplace operator.Manuscripta Math. 109 (2002), 229-231. Zbl 1100.35032, MR 1935031
Reference: [4] Belloni M., Kawohl B.: The pseudo-$p$-Laplace eigenvalue problem and viscosity solutions as $p\to \infty $.ESAIM COCV, to appear. Zbl 1092.35074, MR 2084254
Reference: [5] Chavel I.: Isoperimetric Inequalities. Differential Geometric and Analytic Perspectives.Cambridge University Press, Cambridge, 2001. Zbl 0988.51019, MR 1849187
Reference: [6] Cheeger J.: A lower bound for the smallest eigenvalue of the Laplacian.in: Problems in Analysis, A Symposium in Honor of Salomon Bochner, R.C. Gunning, Ed., Princeton Univ. Press, 1970, pp.195-199. Zbl 0212.44903, MR 0402831
Reference: [7] Cicaclese M., Trombetti C.: Asymptotic behaviour of solutions to $p$-Laplacian equation.preprint No. 13, Univ. Napoli, 2002.
Reference: [8] Demengel F.: Theorémès d'existence pour des équations avec l'opérateur $1$-Laplacien, première valeur propre pour $-\Delta_1$.C.R. Acad. Sci. Paris, Ser. I 334 (2002), 1071-1076. Zbl 1142.35408, MR 1911649
Reference: [9] Fridman V.: doctoral thesis, in preparation..
Reference: [10] Giusti E.: Minimal Surfaces and Functions of Bounded Variation.Birkhäuser Verlag, Basel, 1984. Zbl 0825.49059, MR 0775682
Reference: [11] Gonzales E., Massari U., Tamanini I.: On the regularity of boundaries of sets minimizing perimeter with a volume constraint.Indiana Univ. Math. J. 32 (1983), 25-37. MR 0684753
Reference: [12] Huang Y.X.: On the eigenvalues of the $p$-Laplacian with varying $p$.Proc. Amer. Math. Soc. 125 (1997), 3347-3354. Zbl 0882.35087, MR 1403133
Reference: [13] Juutinen P., Lindqvist P., Manfredi J.: The $\infty$-eigenvalue problem.Arch. Ration. Mech. Anal. 148 (1999), 89-105. Zbl 0947.35104, MR 1716563
Reference: [14] Kawohl B.: Rearrangements and Convexity of Level Sets in PDE.Springer Lecture Notes in Math. 1150, 1985. Zbl 0593.35002, MR 0810619
Reference: [15] Kawohl B.: On a family of torsional creep problems.J. reine angew. Math. 410 (1990), 1-22. Zbl 0701.35015, MR 1068797
Reference: [16] Kawohl B., Stará J., Wittum G.: Analysis and numerical studies of a problem of shape design.Arch. Ration. Mech. Anal. 114 (1991), 349-363. MR 1100800
Reference: [17] Kawohl B., Kutev N.: Global behavior of solutions to a parabolic mean curvature equation.Differ. Integral Equations 8 (1995), 1923-1946. MR 1348958
Reference: [18] Kawohl B.: Some nonconvex shape optimization problems.in: Optimal Shape Design, B. Kawohl et al., Eds., Springer Lecture Notes in Math. 1740 (2000), 7-46. Zbl 0982.49024, MR 1804684
Reference: [19] Lindqvist P.: On non-linear Rayleigh quotients.Potential Anal. 2 (1993), 199-218.
Reference: [20] Lindqvist P.: A note on the nonlinear Rayleigh quotient.in: Analysis, Algebra and Computers in Mathematical Research (Lulea 1992), M. Gyllenberg & L.E. Persson, Eds., Marcel Dekker Lecture Notes in Pure and Appl. Math. 156, 1994, pp. 223-231. Zbl 0805.35085, MR 1280948
Reference: [21] Lindqvist P.: On a nonlinear eigenvalue problem.Padova, 2000, pp. 79-110. Zbl 0838.35094
Reference: [22] Lefton L., Wei D.: Numerical approximation of the first eigenpair of the $p$-Laplacian using finite elements and the penalty method.Numer. Funct. Anal. Optim. 18 (1997), 389-399. Zbl 0884.65103, MR 1448898
Reference: [23] Matei A.M.: First eigenvalue for the $p$-Laplace operator.Nonlinear Anal. TMA 39 (2000), 1051-1061. Zbl 0948.35090, MR 1735181
Reference: [24] Marcellini P., Miller K.: Elliptic versus parabolic regularization for the equation of prescribed mean curvature.J. Differential Equations 137 (1997), 1-53. Zbl 0890.35046, MR 1451535
Reference: [25] Payne L.E., Rayner M.E.: An isoperimetric inequality for the first eigenfunction in the fixed membrane problem.Z. Angew. Math. Phys. 23 (1972), 13-15. Zbl 0241.73080, MR 0313649
Reference: [26] Payne L.E., Rayner M.E.: Some isoperimetric norm bound for solutions of the Helmholtz equation.Z. Angew. Math. Phys. 24 (1973), 105-110. MR 0324202
Reference: [27] Sakaguchi S.: Concavity properties of solutions to some degenerate quasilinear elliptic Dirichlet problems.Ann. Sci. Norm. Sup. Pisa (IV) 14 (1987), 404-421. Zbl 0665.35025, MR 0951227
Reference: [28] Shirakawa K.: Asymptotic convergence of $p$-Laplace equations with constraints as $p$ tends to $1$.Math. Methods Appl. Sci. 25 (2002), 771-793. MR 1906858
Reference: [29] Stredulinsky E., Ziemer W.P.: Area minimizing sets subject to a volume constraint in a convex set.J. Geom. Anal. 7 (1997), 653-677. Zbl 0940.49025, MR 1669207
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_44-2003-4_10.pdf 223.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo