Previous |  Up |  Next

Article

Keywords:
isoperimetric estimates; eigenvalue; Cheeger constant; $p$-Laplace operator; $1$-Laplace operator
Summary:
First we recall a Faber-Krahn type inequality and an estimate for $\lambda_p(\Omega)$ in terms of the so-called Cheeger constant. Then we prove that the eigenvalue $\lambda_p(\Omega)$ converges to the Cheeger constant $h(\Omega)$ as $p\to 1$. The associated eigenfunction $u_p$ converges to the characteristic function of the Cheeger set, i.e. a subset of $\Omega$ which minimizes the ratio $|\partial D|/|D|$ among all simply connected $D\subset\subset\Omega$. As a byproduct we prove that for convex $\Omega$ the Cheeger set $\omega$ is also convex.
References:
[1] Alvino A., Ferone V., Trombetti G.: On the properties of some nonlinear eigenvalues. SIAM J. Math. Anal. 29 (1998), 437-451. MR 1616519 | Zbl 0908.35094
[2] Bhattacharia T.: A proof of the Faber-Krahn inequality for the first eigenvalue of the $p$-Laplacian. Ann. Mat. Pura Appl. Ser. 4 177 (1999), 225-240. MR 1747632
[3] Belloni M., Kawohl B.: A direct uniqueness proof for equations involving the $p$-Laplace operator. Manuscripta Math. 109 (2002), 229-231. MR 1935031 | Zbl 1100.35032
[4] Belloni M., Kawohl B.: The pseudo-$p$-Laplace eigenvalue problem and viscosity solutions as $p\to \infty $. ESAIM COCV, to appear. MR 2084254 | Zbl 1092.35074
[5] Chavel I.: Isoperimetric Inequalities. Differential Geometric and Analytic Perspectives. Cambridge University Press, Cambridge, 2001. MR 1849187 | Zbl 0988.51019
[6] Cheeger J.: A lower bound for the smallest eigenvalue of the Laplacian. in: Problems in Analysis, A Symposium in Honor of Salomon Bochner, R.C. Gunning, Ed., Princeton Univ. Press, 1970, pp.195-199. MR 0402831 | Zbl 0212.44903
[7] Cicaclese M., Trombetti C.: Asymptotic behaviour of solutions to $p$-Laplacian equation. preprint No. 13, Univ. Napoli, 2002.
[8] Demengel F.: Theorémès d'existence pour des équations avec l'opérateur $1$-Laplacien, première valeur propre pour $-\Delta_1$. C.R. Acad. Sci. Paris, Ser. I 334 (2002), 1071-1076. MR 1911649 | Zbl 1142.35408
[9] Fridman V.: doctoral thesis, in preparation.
[10] Giusti E.: Minimal Surfaces and Functions of Bounded Variation. Birkhäuser Verlag, Basel, 1984. MR 0775682 | Zbl 0825.49059
[11] Gonzales E., Massari U., Tamanini I.: On the regularity of boundaries of sets minimizing perimeter with a volume constraint. Indiana Univ. Math. J. 32 (1983), 25-37. MR 0684753
[12] Huang Y.X.: On the eigenvalues of the $p$-Laplacian with varying $p$. Proc. Amer. Math. Soc. 125 (1997), 3347-3354. MR 1403133 | Zbl 0882.35087
[13] Juutinen P., Lindqvist P., Manfredi J.: The $\infty$-eigenvalue problem. Arch. Ration. Mech. Anal. 148 (1999), 89-105. MR 1716563 | Zbl 0947.35104
[14] Kawohl B.: Rearrangements and Convexity of Level Sets in PDE. Springer Lecture Notes in Math. 1150, 1985. MR 0810619 | Zbl 0593.35002
[15] Kawohl B.: On a family of torsional creep problems. J. reine angew. Math. 410 (1990), 1-22. MR 1068797 | Zbl 0701.35015
[16] Kawohl B., Stará J., Wittum G.: Analysis and numerical studies of a problem of shape design. Arch. Ration. Mech. Anal. 114 (1991), 349-363. MR 1100800
[17] Kawohl B., Kutev N.: Global behavior of solutions to a parabolic mean curvature equation. Differ. Integral Equations 8 (1995), 1923-1946. MR 1348958
[18] Kawohl B.: Some nonconvex shape optimization problems. in: Optimal Shape Design, B. Kawohl et al., Eds., Springer Lecture Notes in Math. 1740 (2000), 7-46. MR 1804684 | Zbl 0982.49024
[19] Lindqvist P.: On non-linear Rayleigh quotients. Potential Anal. 2 (1993), 199-218.
[20] Lindqvist P.: A note on the nonlinear Rayleigh quotient. in: Analysis, Algebra and Computers in Mathematical Research (Lulea 1992), M. Gyllenberg & L.E. Persson, Eds., Marcel Dekker Lecture Notes in Pure and Appl. Math. 156, 1994, pp. 223-231. MR 1280948 | Zbl 0805.35085
[21] Lindqvist P.: On a nonlinear eigenvalue problem. Padova, 2000, pp. 79-110. Zbl 0838.35094
[22] Lefton L., Wei D.: Numerical approximation of the first eigenpair of the $p$-Laplacian using finite elements and the penalty method. Numer. Funct. Anal. Optim. 18 (1997), 389-399. MR 1448898 | Zbl 0884.65103
[23] Matei A.M.: First eigenvalue for the $p$-Laplace operator. Nonlinear Anal. TMA 39 (2000), 1051-1061. MR 1735181 | Zbl 0948.35090
[24] Marcellini P., Miller K.: Elliptic versus parabolic regularization for the equation of prescribed mean curvature. J. Differential Equations 137 (1997), 1-53. MR 1451535 | Zbl 0890.35046
[25] Payne L.E., Rayner M.E.: An isoperimetric inequality for the first eigenfunction in the fixed membrane problem. Z. Angew. Math. Phys. 23 (1972), 13-15. MR 0313649 | Zbl 0241.73080
[26] Payne L.E., Rayner M.E.: Some isoperimetric norm bound for solutions of the Helmholtz equation. Z. Angew. Math. Phys. 24 (1973), 105-110. MR 0324202
[27] Sakaguchi S.: Concavity properties of solutions to some degenerate quasilinear elliptic Dirichlet problems. Ann. Sci. Norm. Sup. Pisa (IV) 14 (1987), 404-421. MR 0951227 | Zbl 0665.35025
[28] Shirakawa K.: Asymptotic convergence of $p$-Laplace equations with constraints as $p$ tends to $1$. Math. Methods Appl. Sci. 25 (2002), 771-793. MR 1906858
[29] Stredulinsky E., Ziemer W.P.: Area minimizing sets subject to a volume constraint in a convex set. J. Geom. Anal. 7 (1997), 653-677. MR 1669207 | Zbl 0940.49025
Partner of
EuDML logo