Title:
|
Best approximations and porous sets (English) |
Author:
|
Reich, Simeon |
Author:
|
Zaslavski, Alexander J. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
44 |
Issue:
|
4 |
Year:
|
2003 |
Pages:
|
681-689 |
. |
Category:
|
math |
. |
Summary:
|
Let $D$ be a nonempty compact subset of a Banach space $X$ and denote by $S(X)$ the family of all nonempty bounded closed convex subsets of $X$. We endow $S(X)$ with the Hausdorff metric and show that there exists a set $\Cal F \subset S(X)$ such that its complement $S(X) \setminus \Cal F$ is $\sigma$-porous and such that for each $A\in \Cal F$ and each $\tilde x\in D$, the set of solutions of the best approximation problem $\|\tilde x-z\| \to \min$, $z \in A$, is nonempty and compact, and each minimizing sequence has a convergent subsequence. (English) |
Keyword:
|
Banach space |
Keyword:
|
complete metric space |
Keyword:
|
generic property |
Keyword:
|
Hausdorff metric |
Keyword:
|
nearest point |
Keyword:
|
porous set |
MSC:
|
41A50 |
MSC:
|
41A52 |
MSC:
|
41A65 |
MSC:
|
49K40 |
MSC:
|
54E35 |
MSC:
|
54E50 |
MSC:
|
54E52 |
idZBL:
|
Zbl 1096.41022 |
idMR:
|
MR2062884 |
. |
Date available:
|
2009-01-08T19:32:09Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119422 |
. |
Reference:
|
[1] Benyamini Y., Lindenstrauss J.: Geometric Nonlinear Functional Analysis.Amer. Math. Soc. Providence, RI (2000). Zbl 0946.46002, MR 1727673 |
Reference:
|
[2] De Blasi F.S., Georgiev P.G., Myjak J.: On porous sets and best approximation theory.preprint. Zbl 1088.41015 |
Reference:
|
[3] De Blasi F.S., Myjak J.: On the minimum distance theorem to a closed convex set in a Banach space.Bull. Acad. Polon. Sci. 29 373-376 (1981). Zbl 0515.41031, MR 0640331 |
Reference:
|
[4] De Blasi F.S., Myjak J.: On almost well posed problems in the theory of best approximation.Bull. Math. Soc. Sci. Math. R.S. Roum. 28 109-117 (1984). Zbl 0593.41026, MR 0771542 |
Reference:
|
[5] De Blasi F.S., Myjak J., Papini P.L.: Porous sets in best approximation theory.J. London Math. Soc. 44 135-142 (1991). Zbl 0786.41027, MR 1122975 |
Reference:
|
[6] Furi M., Vignoli A.: About well-posed minimization problems for functionals in metric spaces.J. Optim. Theory Appl. 5 225-229 (1970). |
Reference:
|
[7] Matoušková E.: How small are the sets where the metric projection fails to be continuous.Acta Univ. Carolin. Math. Phys. 33 99-108 (1992). MR 1287230 |
Reference:
|
[8] Reich S., Zaslavski A.J.: Asymptotic behavior of dynamical systems with a convex Lyapunov function.J. Nonlinear Convex Anal. 1 107-113 (2000). Zbl 0984.37016, MR 1751731 |
Reference:
|
[9] Reich S., Zaslavski A.J.: Well-posedness and porosity in best approximation problems.Topol. Methods Nonlinear Anal. 18 395-408 (2001). Zbl 1005.41011, MR 1911709 |
Reference:
|
[10] Reich S., Zaslavski A.J.: A porosity result in best approximation theory.J. Nonlinear Convex Anal. 4 165-173 (2003). Zbl 1024.41017, MR 1986978 |
Reference:
|
[11] L. Zajíček: On the Fréchet differentiability of distance functions.Suppl. Rend. Circ. Mat. Palermo (2) 5 161-165 (1984). MR 0781948 |
Reference:
|
[12] Zajíček L.: Porosity and $\sigma$-porosity.Real Anal. Exchange 13 314-350 (1987). MR 0943561 |
Reference:
|
[13] Zajíček L.: Small non-$\sigma$-porous sets in topologically complete metric spaces.Colloq. Math. 77 293-304 (1998). MR 1628994 |
Reference:
|
[14] Zaslavski A.J.: Well-posedness and porosity in optimal control without convexity assumptions.Calc. Var. 13 265-293 (2001). Zbl 1032.49035, MR 1864999 |
. |