Previous |  Up |  Next

Article

Title: Best approximations and porous sets (English)
Author: Reich, Simeon
Author: Zaslavski, Alexander J.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 44
Issue: 4
Year: 2003
Pages: 681-689
.
Category: math
.
Summary: Let $D$ be a nonempty compact subset of a Banach space $X$ and denote by $S(X)$ the family of all nonempty bounded closed convex subsets of $X$. We endow $S(X)$ with the Hausdorff metric and show that there exists a set $\Cal F \subset S(X)$ such that its complement $S(X) \setminus \Cal F$ is $\sigma$-porous and such that for each $A\in \Cal F$ and each $\tilde x\in D$, the set of solutions of the best approximation problem $\|\tilde x-z\| \to \min$, $z \in A$, is nonempty and compact, and each minimizing sequence has a convergent subsequence. (English)
Keyword: Banach space
Keyword: complete metric space
Keyword: generic property
Keyword: Hausdorff metric
Keyword: nearest point
Keyword: porous set
MSC: 41A50
MSC: 41A52
MSC: 41A65
MSC: 49K40
MSC: 54E35
MSC: 54E50
MSC: 54E52
idZBL: Zbl 1096.41022
idMR: MR2062884
.
Date available: 2009-01-08T19:32:09Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119422
.
Reference: [1] Benyamini Y., Lindenstrauss J.: Geometric Nonlinear Functional Analysis.Amer. Math. Soc. Providence, RI (2000). Zbl 0946.46002, MR 1727673
Reference: [2] De Blasi F.S., Georgiev P.G., Myjak J.: On porous sets and best approximation theory.preprint. Zbl 1088.41015
Reference: [3] De Blasi F.S., Myjak J.: On the minimum distance theorem to a closed convex set in a Banach space.Bull. Acad. Polon. Sci. 29 373-376 (1981). Zbl 0515.41031, MR 0640331
Reference: [4] De Blasi F.S., Myjak J.: On almost well posed problems in the theory of best approximation.Bull. Math. Soc. Sci. Math. R.S. Roum. 28 109-117 (1984). Zbl 0593.41026, MR 0771542
Reference: [5] De Blasi F.S., Myjak J., Papini P.L.: Porous sets in best approximation theory.J. London Math. Soc. 44 135-142 (1991). Zbl 0786.41027, MR 1122975
Reference: [6] Furi M., Vignoli A.: About well-posed minimization problems for functionals in metric spaces.J. Optim. Theory Appl. 5 225-229 (1970).
Reference: [7] Matoušková E.: How small are the sets where the metric projection fails to be continuous.Acta Univ. Carolin. Math. Phys. 33 99-108 (1992). MR 1287230
Reference: [8] Reich S., Zaslavski A.J.: Asymptotic behavior of dynamical systems with a convex Lyapunov function.J. Nonlinear Convex Anal. 1 107-113 (2000). Zbl 0984.37016, MR 1751731
Reference: [9] Reich S., Zaslavski A.J.: Well-posedness and porosity in best approximation problems.Topol. Methods Nonlinear Anal. 18 395-408 (2001). Zbl 1005.41011, MR 1911709
Reference: [10] Reich S., Zaslavski A.J.: A porosity result in best approximation theory.J. Nonlinear Convex Anal. 4 165-173 (2003). Zbl 1024.41017, MR 1986978
Reference: [11] L. Zajíček: On the Fréchet differentiability of distance functions.Suppl. Rend. Circ. Mat. Palermo (2) 5 161-165 (1984). MR 0781948
Reference: [12] Zajíček L.: Porosity and $\sigma$-porosity.Real Anal. Exchange 13 314-350 (1987). MR 0943561
Reference: [13] Zajíček L.: Small non-$\sigma$-porous sets in topologically complete metric spaces.Colloq. Math. 77 293-304 (1998). MR 1628994
Reference: [14] Zaslavski A.J.: Well-posedness and porosity in optimal control without convexity assumptions.Calc. Var. 13 265-293 (2001). Zbl 1032.49035, MR 1864999
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_44-2003-4_12.pdf 192.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo