Previous |  Up |  Next

Article

Title: Convolution operators on the dual of hypergroup algebras (English)
Author: Ghaffari, Ali
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 44
Issue: 4
Year: 2003
Pages: 669-679
.
Category: math
.
Summary: Let $X$ be a hypergroup. In this paper, we define a locally convex topology $\beta $ on $L(X)$ such that $(L(X),\beta )^*$ with the strong topology can be identified with a Banach subspace of $L(X)^*$. We prove that if $X$ has a Haar measure, then the dual to this subspace is $L_C(X)^{**}= \operatorname{cl}\{F\in L(X)^{**}; F$ has compact carrier\}. Moreover, we study the operators on $L(X)^*$ and $L_0^\infty(X)$ which commute with translations and convolutions. We prove, among other things, that if $\operatorname{wap}(L(X))$ is left stationary, then there is a weakly compact operator $T$ on $L(X)^*$ which commutes with convolutions if and only if $L(X)^{**}$ has a topologically left invariant functional. For the most part, $X$ is a hypergroup not necessarily with an involution and Haar measure except when explicitly stated. (English)
Keyword: Arens regular
Keyword: hypergroup algebra
Keyword: weakly almost periodic
Keyword: convolution operators
MSC: 43A10
MSC: 43A62
MSC: 46H99
idZBL: Zbl 1098.43001
idMR: MR2062883
.
Date available: 2009-01-08T19:32:03Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119421
.
Reference: [1] Bloom W.R., Heyer H.: Harmonic Analysis of Probability Measures on Hypergroups.de Gruyter, Berlin, 1995. Zbl 0828.43005, MR 1312826
Reference: [2] Bloom W.R., Walter M.E.: Isomorphism of hypergroups.J. Austral. Math. Soc. 52 (1992), 383-400. MR 1151294
Reference: [3] Duncan J., Hosseiniun S.A.R.: The second dual of Banach algebra.Proc. Royal Soc. Edinburgh 84 (1979), 309-325. MR 0559675
Reference: [4] Dunkl C.F.: The measure algebra of a locally compact hypergroup.Trans. Amer. Math. Soc. 179 (1973), 331-348. Zbl 0241.43003, MR 0320635
Reference: [5] Ghahramani F., Medghalchi A.R.: Compact multipliers on hypergroup algebras.Math. Proc. Cambridge Philos. Soc. 98 (1985), 493-500. MR 0803608
Reference: [6] Ghahramani F., Medghalchi A.R.: Compact multiplier on hypergroup algebras II.Math. Proc. Cambridge Philos. Soc. 100 (1986), 145-149. MR 0838661
Reference: [7] Granirer E.E.: Criteria for compactness and for discreteness of locally compact amenable groups.Proc. Amer. Math. Soc. 40 (1973), 615-624. Zbl 0274.22009, MR 0340962
Reference: [8] Jewett R.I.: Spaces with an abstract convolution of measures.Adv. Math. 18 (1975), 1-101. Zbl 0325.42017, MR 0394034
Reference: [9] Larsen R.: An Introduction to the Theory of Multipliers.Springer Verlag, Berlin, Heidelberg, New York, 1960. Zbl 0213.13301, MR 0435738
Reference: [10] Lasser R.: Almost periodic functions on hypergroups.Math. Ann. 252 (1980), 183-196. Zbl 0431.43007, MR 0593632
Reference: [11] Lau A.T.: Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups.Fund. Math. 118 (1983), 161-175. Zbl 0545.46051, MR 0736276
Reference: [12] Lau A.T., Pym J.S.: Concerning the second dual of the group algebra of a locally compact group.J. London Math. Soc. 41 (1990), 445-460. Zbl 0667.43004, MR 1072051
Reference: [13] Lau A.T., Ulger A.: Topological centers of certain dual algebras.Trans. Amer. Math. Soc. 348 (1996), 1191-1212. MR 1322952
Reference: [14] Medghalchi A.R.: The second dual of a hypergroup.Math. Z. 210 (1992), 615-624. MR 1175726
Reference: [15] Medghalchi A.R., Modarres S.M.S.: Amenability of the second dual of hypergroup algebras.Acta. Math. Hungar. 86 (2000), 335-342. Zbl 0970.46030, MR 1756256
Reference: [16] Rudin W.: Functional Analysis.McGraw Hill, New York, 1991. Zbl 0867.46001, MR 1157815
Reference: [17] Skantharajah M.: Amenable hypergroups.Ph.D. Thesis, The University of Alberta, 1989. Zbl 0755.43003
Reference: [18] Skantharajah M.: Amenable hypergroups.Illinois J. Math. 36 (1992), 15-46. Zbl 0755.43003, MR 1133768
Reference: [19] Spector R.: Apercu de la theorie des hypergroups in analyse harmonique sur les groups de Lie.Lecture Notes in Math. 497, Springer Verlag, New York, 1975. MR 0447974
Reference: [20] Wolfenstetter S.: Weakly almost periodic functions on hypergroups.Monatsh. Math. 96 (1983), 67-79. Zbl 0532.43005, MR 0721597
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_44-2003-4_11.pdf 225.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo