Title:
|
Convolution operators on the dual of hypergroup algebras (English) |
Author:
|
Ghaffari, Ali |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
44 |
Issue:
|
4 |
Year:
|
2003 |
Pages:
|
669-679 |
. |
Category:
|
math |
. |
Summary:
|
Let $X$ be a hypergroup. In this paper, we define a locally convex topology $\beta $ on $L(X)$ such that $(L(X),\beta )^*$ with the strong topology can be identified with a Banach subspace of $L(X)^*$. We prove that if $X$ has a Haar measure, then the dual to this subspace is $L_C(X)^{**}= \operatorname{cl}\{F\in L(X)^{**}; F$ has compact carrier\}. Moreover, we study the operators on $L(X)^*$ and $L_0^\infty(X)$ which commute with translations and convolutions. We prove, among other things, that if $\operatorname{wap}(L(X))$ is left stationary, then there is a weakly compact operator $T$ on $L(X)^*$ which commutes with convolutions if and only if $L(X)^{**}$ has a topologically left invariant functional. For the most part, $X$ is a hypergroup not necessarily with an involution and Haar measure except when explicitly stated. (English) |
Keyword:
|
Arens regular |
Keyword:
|
hypergroup algebra |
Keyword:
|
weakly almost periodic |
Keyword:
|
convolution operators |
MSC:
|
43A10 |
MSC:
|
43A62 |
MSC:
|
46H99 |
idZBL:
|
Zbl 1098.43001 |
idMR:
|
MR2062883 |
. |
Date available:
|
2009-01-08T19:32:03Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119421 |
. |
Reference:
|
[1] Bloom W.R., Heyer H.: Harmonic Analysis of Probability Measures on Hypergroups.de Gruyter, Berlin, 1995. Zbl 0828.43005, MR 1312826 |
Reference:
|
[2] Bloom W.R., Walter M.E.: Isomorphism of hypergroups.J. Austral. Math. Soc. 52 (1992), 383-400. MR 1151294 |
Reference:
|
[3] Duncan J., Hosseiniun S.A.R.: The second dual of Banach algebra.Proc. Royal Soc. Edinburgh 84 (1979), 309-325. MR 0559675 |
Reference:
|
[4] Dunkl C.F.: The measure algebra of a locally compact hypergroup.Trans. Amer. Math. Soc. 179 (1973), 331-348. Zbl 0241.43003, MR 0320635 |
Reference:
|
[5] Ghahramani F., Medghalchi A.R.: Compact multipliers on hypergroup algebras.Math. Proc. Cambridge Philos. Soc. 98 (1985), 493-500. MR 0803608 |
Reference:
|
[6] Ghahramani F., Medghalchi A.R.: Compact multiplier on hypergroup algebras II.Math. Proc. Cambridge Philos. Soc. 100 (1986), 145-149. MR 0838661 |
Reference:
|
[7] Granirer E.E.: Criteria for compactness and for discreteness of locally compact amenable groups.Proc. Amer. Math. Soc. 40 (1973), 615-624. Zbl 0274.22009, MR 0340962 |
Reference:
|
[8] Jewett R.I.: Spaces with an abstract convolution of measures.Adv. Math. 18 (1975), 1-101. Zbl 0325.42017, MR 0394034 |
Reference:
|
[9] Larsen R.: An Introduction to the Theory of Multipliers.Springer Verlag, Berlin, Heidelberg, New York, 1960. Zbl 0213.13301, MR 0435738 |
Reference:
|
[10] Lasser R.: Almost periodic functions on hypergroups.Math. Ann. 252 (1980), 183-196. Zbl 0431.43007, MR 0593632 |
Reference:
|
[11] Lau A.T.: Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups.Fund. Math. 118 (1983), 161-175. Zbl 0545.46051, MR 0736276 |
Reference:
|
[12] Lau A.T., Pym J.S.: Concerning the second dual of the group algebra of a locally compact group.J. London Math. Soc. 41 (1990), 445-460. Zbl 0667.43004, MR 1072051 |
Reference:
|
[13] Lau A.T., Ulger A.: Topological centers of certain dual algebras.Trans. Amer. Math. Soc. 348 (1996), 1191-1212. MR 1322952 |
Reference:
|
[14] Medghalchi A.R.: The second dual of a hypergroup.Math. Z. 210 (1992), 615-624. MR 1175726 |
Reference:
|
[15] Medghalchi A.R., Modarres S.M.S.: Amenability of the second dual of hypergroup algebras.Acta. Math. Hungar. 86 (2000), 335-342. Zbl 0970.46030, MR 1756256 |
Reference:
|
[16] Rudin W.: Functional Analysis.McGraw Hill, New York, 1991. Zbl 0867.46001, MR 1157815 |
Reference:
|
[17] Skantharajah M.: Amenable hypergroups.Ph.D. Thesis, The University of Alberta, 1989. Zbl 0755.43003 |
Reference:
|
[18] Skantharajah M.: Amenable hypergroups.Illinois J. Math. 36 (1992), 15-46. Zbl 0755.43003, MR 1133768 |
Reference:
|
[19] Spector R.: Apercu de la theorie des hypergroups in analyse harmonique sur les groups de Lie.Lecture Notes in Math. 497, Springer Verlag, New York, 1975. MR 0447974 |
Reference:
|
[20] Wolfenstetter S.: Weakly almost periodic functions on hypergroups.Monatsh. Math. 96 (1983), 67-79. Zbl 0532.43005, MR 0721597 |
. |