Previous |  Up |  Next

Article

Title: Cardinal characteristics of the ideal of Haar null sets (English)
Author: Banakh, T.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 45
Issue: 1
Year: 2004
Pages: 119-137
.
Category: math
.
Summary: We calculate the cardinal characteristics of the $\sigma$-ideal $\Cal H\Cal N(G)$ of Haar null subsets of a Polish non-locally compact group $G$ with invariant metric and show that $\operatorname{cov}(\Cal H\Cal N(G)) \leq \frak b\leq \max \{\frak d,\operatorname{non}(\Cal N)\}\leq \operatorname{non}(\Cal H\Cal N(G))\leq \operatorname{cof}(\Cal H\Cal N(G)) \kern -0.86pt > \kern -0.86pt \min \{\frak d,\operatorname{non}(\Cal N)\}$. If $G=\prod_{n\geq 0}G_n$ is the product of abelian locally compact groups $G_n$, then $\operatorname{add}(\Cal H\Cal N(G)) \break = \operatorname{add}(\Cal N)$, $\operatorname{cov}(\Cal H\Cal N(G))=\min\{\frak b, \operatorname{cov}(\Cal N)\}$, $\operatorname{non}(\Cal H\Cal N(G))= \max \{\frak d,\operatorname{non}(\Cal N)\}$ and \linebreak $\operatorname{cof}(\Cal H\Cal N(G))\geq \operatorname{cof}(\Cal N)$, where $\Cal N$ is the ideal of Lebesgue null subsets on the real line. Martin Axiom implies that $\operatorname{cof}(\Cal H\Cal N(G))>2^{\aleph_0}$ and hence $G$ contains a Haar null subset that cannot be enlarged to a Borel or projective Haar null subset of $G$. This gives a negative (consistent) answer to a question of S. Solecki. To obtain these estimates we show that for a Polish non-locally compact group $G$ with invariant metric the ideal $\Cal H\Cal N(G)$ contains all $o$-bounded subsets (equivalently, subsets with the small ball property) of $G$. (English)
Keyword: Polish group
Keyword: Haar null set
Keyword: Martin Axion
Keyword: cardinal characteristics of an ideal
Keyword: $o$-bounded set
Keyword: the small ball property
MSC: 03E04
MSC: 03E15
MSC: 03E17
MSC: 03E35
MSC: 03E50
MSC: 03E75
MSC: 22A10
MSC: 28C10
MSC: 54A25
MSC: 54H11
idZBL: Zbl 1098.03057
idMR: MR2076864
.
Date available: 2009-05-05T16:43:43Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119441
.
Reference: [Ba$_1$] Banakh T.: Locally minimal groups and their embeddings into products of $o$-bounded groups.Comment. Math. Univ. Carolinae 41.4 (2000), 811-815. MR 1800163
Reference: [Ba$_2$] Banakh T.: On index of total boundedness of (strictly) $o$-bounded groups.Topology Appl. 120 (2002), 427-439. Zbl 1010.22004, MR 1897272
Reference: [BNS] Banakh T., Nickolas P., Sanchis M.: Filter games and pathologic subgroups of the countable product of lines.J. Austral. Math. Soc., to appear. MR 2300160
Reference: [BP] Banakh T.O., Protasov I.V.: Ball structures and colorings of graphs and groups.VNTL, Lviv, 2003. Zbl 1147.05033, MR 2392704
Reference: [BS] Bartoszyński T., Judah H., Shelah S.: The Cichoń diagram.J. Symb. Log. 58.2 (1993), 401-423. MR 1233917
Reference: [BK] Behrends E., Kadets V.: On the small ball property.Studia Math. 148 (2001), 275-287. MR 1880727
Reference: [BL] Benyamini Y., Lindenstrauss J.: Geometric Nonlinear Functional Analysis, I.Amer. Math. Soc., 2000. MR 1727673
Reference: [C] Christensen J.P.R.: On sets of Haar measure zero in abelian Polish groups.Israel J. Math. 13 (1972), 255-260. MR 0326293
Reference: [D] Dougherty R.: Examples of nonshy sets.Fund. Math. 144 (1994), 73-88. MR 1271479
Reference: [vD] van Douwen E.K.: The integers and topology.in Handbook of Set-Theoretic Topology , K. Kunen, J.E. Vaughan (Eds.), North-Holland, Amsterdam, 1984, pp.111-167. Zbl 0561.54004, MR 0776619
Reference: [Her] Hernández C.: Topological groups close to being $\sigma$-compact.Topology Appl. 102 (2000), 101-111. MR 1739266
Reference: [HRT] Hernández C., Robbie D., Tkachenko M.: Some properties of $o$-bounded and strictly $o$-bounded groups.Appl. General Topology 1 (2000), 29-43. MR 1796930
Reference: [He] Heyer H.: Probability Measures on Locally Compact Groups.Springer, 1977. Zbl 0528.60010, MR 0501241
Reference: [Ke] Kechris A.: Classical Descriptive Set Theory.Springer, 1995. Zbl 0819.04002, MR 1321597
Reference: [La] Laver R.: On the consistency of the Borel's conjecture.Acta Math. 137 (1976), 151-169. MR 0422027
Reference: [Pa] Paterson A.: Amenability.Math. Surveys and Monographs, vol. 29, Amer. Math. Soc., 1988. Zbl 1106.22008, MR 0961261
Reference: [PZ] Plichko A., Zagorodnyuk A.: Isotropic mappings and automatic continuity of polynomial, analytic, and convex operators.in General Topology in Banach Spaces (T. Banakh, Ed.), Nova Sci. Publ., NY, 2001, pp.1-13. MR 1901530
Reference: [Po] Pontryagin L.S.: Continuous Groups.Nauka, Moscow, 1984. Zbl 0659.22001, MR 0767087
Reference: [S$_1$] Solecki S.: Haar null sets.Fund. Math. 149 (1996), 205-210. Zbl 0887.28006, MR 1383206
Reference: [S$_2$] Solecki S.: Haar null and non-dominating sets.Fund. Math. 170 (2001), 197-217. Zbl 0994.28006, MR 1881376
Reference: [Tk$_1$] Tkachenko M.: Introduction to topological groups.Topology Appl. 86 (1998), 179-231. Zbl 0955.54013, MR 1623960
Reference: [Tk$_2$] Tkachenko M.: Topological groups: between compactness and $\aleph_0$-boundedness.in Recent Progress in General Topology, (M. Hušek and J. van Mill, Eds.), North-Holland, 2002. Zbl 1029.54045, MR 1970010
Reference: [Ts] Tsaban B.: $o$-Bounded groups and other topological groups with strong combinatorial properties.submitted, http://arxiv.org/abs/math.GN/0307225. Zbl 1090.54034, MR 2180906
Reference: [THJ] Topsøe F., Hoffmann-Jørgensen J.: Analytic Spaces and their Applications.in Analytic Sets, C. Rogers et al., Academic Press, London, 1980.
Reference: [V] Vaughan J.E.: Small uncountable cardinals and topology.in Open Problems in Topology, J. van Mill, G.M. Reed (Eds.), Elsevier Sci. Publ., 1990, pp.197-216. MR 1078647
Reference: [Za] Zakrzewski P.: Measures on algebraic-topological structures.in Handbook on Measure Theory, E. Pap (Ed.), North Holland, 2002. Zbl 1040.28016, MR 1954637
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_45-2004-1_9.pdf 315.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo