Previous |  Up |  Next

Article

Title: Embedding $3$-homogeneous latin trades into abelian $2$-groups (English)
Author: Cavenagh, Nicholas J.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 45
Issue: 2
Year: 2004
Pages: 191-212
.
Category: math
.
Summary: Let $T$ be a partial latin square and $L$ be a latin square with $T\subseteq L$. We say that $T$ is a latin trade if there exists a partial latin square $T'$ with $T'\cap T=\emptyset $ such that $(L\setminus T)\cup T'$ is a latin square. A $k$-homogeneous latin trade is one which intersects each row, each column and each entry either $0$ or $k$ times. In this paper, we show the existence of $3$-homogeneous latin trades in abelian $2$-groups. (English)
Keyword: latin square
Keyword: latin trade
Keyword: abelian $2$-group
MSC: 05B15
MSC: 20N05
idZBL: Zbl 1099.05503
idMR: MR2075269
.
Date available: 2009-05-05T16:44:30Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119450
.
Reference: [1] Adams P., Bean R., Khodkar A.: A census of critical sets in the latin squares of order at most six.Ars Combin. 68 (2003), 203-223. Zbl 1072.05511, MR 1991049
Reference: [2] Adams P., Khodkar A.: Smallest critical sets for the latin squares of order six and seven.J. Combin. Math. Combin. Computing. 67 (2001), 225-237. MR 1834445
Reference: [3] Bates J.A., van Rees G.H.J.: The size of the smallest strong critical set in a latin square.Ars Combin. 53 (1999), 73-83. MR 1724489
Reference: [4] Bate J.A., van Rees G.H.J.: Minimal and near-minimal critical sets in back circulant latin squares.Australas. J. Combinatorics 27 (2003), 47-62. Zbl 1024.05014, MR 1955387
Reference: [5] Cavenagh N.J.: Latin trade algorithms and the smallest critical set in a latin square.J. Autom. Lang. Combin. 8 (2003), 567-578. Zbl 1052.05019, MR 2069074
Reference: [6] Cavenagh N.J.: The size of the smallest latin trade in a back circulant latin square.Bull. Inst. Combin. Appl. 38 (2003), 11-18. Zbl 1046.05015, MR 1977014
Reference: [7] Cavenagh N.J.: The size of the smallest critical set in the back circulant latin square.submitted.
Reference: [8] Cavenagh N.J., Donovan D., Drápal A.: $3$-homogeneous latin trades.submitted.
Reference: [9] Conway J.C., Sloane N.J.: Sphere Packings, Lattices and Groups.New York, Springer-Verlag, 1998. Zbl 0915.52003
Reference: [10] Dénes J., Keedwell A.D.: Latin Squares and Their Applications.English Universities Press, London, 1974. MR 0351850
Reference: [11] Donovan D., Howse A., Adams P.: A discussion of latin interchanges.J. Comb. Math. Comb. Comput. 23 (1997), 161-182. Zbl 0867.05010, MR 1432756
Reference: [12] Donovan D., Mahmoodian E.S.: An algorithm for writing any latin interchange as the sum of intercalates.Bull. Inst. Combin. Appl. 34 (2002), 90-98. MR 1880972
Reference: [13] Drápal A.: On a planar construction of quasigroups.Czechoslovak Math. J. 41 (1991), 538-548. MR 1117806
Reference: [14] Drápal A.: Hamming distances of groups and quasi-groups.Discrete Math. 235 (2001), 189-197. Zbl 0986.20065, MR 1829848
Reference: [15] Drápal A.: Geometry of latin trades.manuscript circulated at the conference Loops'03, Prague 2003.
Reference: [16] Drápal, Kepka T.: Exchangeable Groupoids I.Acta Univ. Carolinae - Math. Phys. 24 (1983), 57-72. MR 0733686
Reference: [17] Drápal, Kepka T.: Exchangeable Groupoids II.Acta Univ. Carolinae - Math. Phys. 26 (1985), 3-9. MR 0830261
Reference: [18] Drápal, Kepka T.: On a distance of groups and latin squares.Comment. Math. Univ. Carolinae 30 (1989), 621-626. MR 1045889
Reference: [19] Hedayat A.S.: The theory of trade-off for $t$-designs.in ``Coding theory and design theory, Part II'', IMA Vol. Math. Appl. 21, Springer, NY, 1990. Zbl 0721.05008, MR 1056530
Reference: [20] Horak P., Aldred R.E.L., Fleischner H.: Completing Latin squares: critical sets.J. Combin. Des. 10 (2002), 419-432. Zbl 1025.05011, MR 1932121
Reference: [21] Keedwell A.D.: Critical sets and critical partial latin squares.in ``Proc. Third China-USA International Conf. on Graph Theory, Combinatorics, Algorithms and Applications'', World Sci. Publishing, NJ, 1994. MR 1313960
Reference: [22] Keedwell A.D.: Critical sets for latin squares, graphs and block designs: A survey.Congr. Numer. 113 (1996), 231-245. Zbl 0955.05019, MR 1393712
Reference: [23] Khodkar A.: On smallest critical sets for the elementary abelian $2$-group.Utilitas Math. 54 (1998), 45-50. Zbl 0922.05012, MR 1658157
Reference: [24] Lütkepohl H.: Handbook of Matrices.Chichester, John Wiley and Sons, 1996. MR 1433592
Reference: [25] Street A.P.: Trades and defining sets.in: C.J. Colbourn and J.H. Dinitz, Eds., CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton, FL., 1996, pp.474-478. Zbl 0847.05011
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_45-2004-2_2.pdf 309.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo