Title:
|
Embedding $3$-homogeneous latin trades into abelian $2$-groups (English) |
Author:
|
Cavenagh, Nicholas J. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
45 |
Issue:
|
2 |
Year:
|
2004 |
Pages:
|
191-212 |
. |
Category:
|
math |
. |
Summary:
|
Let $T$ be a partial latin square and $L$ be a latin square with $T\subseteq L$. We say that $T$ is a latin trade if there exists a partial latin square $T'$ with $T'\cap T=\emptyset $ such that $(L\setminus T)\cup T'$ is a latin square. A $k$-homogeneous latin trade is one which intersects each row, each column and each entry either $0$ or $k$ times. In this paper, we show the existence of $3$-homogeneous latin trades in abelian $2$-groups. (English) |
Keyword:
|
latin square |
Keyword:
|
latin trade |
Keyword:
|
abelian $2$-group |
MSC:
|
05B15 |
MSC:
|
20N05 |
idZBL:
|
Zbl 1099.05503 |
idMR:
|
MR2075269 |
. |
Date available:
|
2009-05-05T16:44:30Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119450 |
. |
Reference:
|
[1] Adams P., Bean R., Khodkar A.: A census of critical sets in the latin squares of order at most six.Ars Combin. 68 (2003), 203-223. Zbl 1072.05511, MR 1991049 |
Reference:
|
[2] Adams P., Khodkar A.: Smallest critical sets for the latin squares of order six and seven.J. Combin. Math. Combin. Computing. 67 (2001), 225-237. MR 1834445 |
Reference:
|
[3] Bates J.A., van Rees G.H.J.: The size of the smallest strong critical set in a latin square.Ars Combin. 53 (1999), 73-83. MR 1724489 |
Reference:
|
[4] Bate J.A., van Rees G.H.J.: Minimal and near-minimal critical sets in back circulant latin squares.Australas. J. Combinatorics 27 (2003), 47-62. Zbl 1024.05014, MR 1955387 |
Reference:
|
[5] Cavenagh N.J.: Latin trade algorithms and the smallest critical set in a latin square.J. Autom. Lang. Combin. 8 (2003), 567-578. Zbl 1052.05019, MR 2069074 |
Reference:
|
[6] Cavenagh N.J.: The size of the smallest latin trade in a back circulant latin square.Bull. Inst. Combin. Appl. 38 (2003), 11-18. Zbl 1046.05015, MR 1977014 |
Reference:
|
[7] Cavenagh N.J.: The size of the smallest critical set in the back circulant latin square.submitted. |
Reference:
|
[8] Cavenagh N.J., Donovan D., Drápal A.: $3$-homogeneous latin trades.submitted. |
Reference:
|
[9] Conway J.C., Sloane N.J.: Sphere Packings, Lattices and Groups.New York, Springer-Verlag, 1998. Zbl 0915.52003 |
Reference:
|
[10] Dénes J., Keedwell A.D.: Latin Squares and Their Applications.English Universities Press, London, 1974. MR 0351850 |
Reference:
|
[11] Donovan D., Howse A., Adams P.: A discussion of latin interchanges.J. Comb. Math. Comb. Comput. 23 (1997), 161-182. Zbl 0867.05010, MR 1432756 |
Reference:
|
[12] Donovan D., Mahmoodian E.S.: An algorithm for writing any latin interchange as the sum of intercalates.Bull. Inst. Combin. Appl. 34 (2002), 90-98. MR 1880972 |
Reference:
|
[13] Drápal A.: On a planar construction of quasigroups.Czechoslovak Math. J. 41 (1991), 538-548. MR 1117806 |
Reference:
|
[14] Drápal A.: Hamming distances of groups and quasi-groups.Discrete Math. 235 (2001), 189-197. Zbl 0986.20065, MR 1829848 |
Reference:
|
[15] Drápal A.: Geometry of latin trades.manuscript circulated at the conference Loops'03, Prague 2003. |
Reference:
|
[16] Drápal, Kepka T.: Exchangeable Groupoids I.Acta Univ. Carolinae - Math. Phys. 24 (1983), 57-72. MR 0733686 |
Reference:
|
[17] Drápal, Kepka T.: Exchangeable Groupoids II.Acta Univ. Carolinae - Math. Phys. 26 (1985), 3-9. MR 0830261 |
Reference:
|
[18] Drápal, Kepka T.: On a distance of groups and latin squares.Comment. Math. Univ. Carolinae 30 (1989), 621-626. MR 1045889 |
Reference:
|
[19] Hedayat A.S.: The theory of trade-off for $t$-designs.in ``Coding theory and design theory, Part II'', IMA Vol. Math. Appl. 21, Springer, NY, 1990. Zbl 0721.05008, MR 1056530 |
Reference:
|
[20] Horak P., Aldred R.E.L., Fleischner H.: Completing Latin squares: critical sets.J. Combin. Des. 10 (2002), 419-432. Zbl 1025.05011, MR 1932121 |
Reference:
|
[21] Keedwell A.D.: Critical sets and critical partial latin squares.in ``Proc. Third China-USA International Conf. on Graph Theory, Combinatorics, Algorithms and Applications'', World Sci. Publishing, NJ, 1994. MR 1313960 |
Reference:
|
[22] Keedwell A.D.: Critical sets for latin squares, graphs and block designs: A survey.Congr. Numer. 113 (1996), 231-245. Zbl 0955.05019, MR 1393712 |
Reference:
|
[23] Khodkar A.: On smallest critical sets for the elementary abelian $2$-group.Utilitas Math. 54 (1998), 45-50. Zbl 0922.05012, MR 1658157 |
Reference:
|
[24] Lütkepohl H.: Handbook of Matrices.Chichester, John Wiley and Sons, 1996. MR 1433592 |
Reference:
|
[25] Street A.P.: Trades and defining sets.in: C.J. Colbourn and J.H. Dinitz, Eds., CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton, FL., 1996, pp.474-478. Zbl 0847.05011 |
. |