Previous |  Up |  Next

Article

Title: Characters of finite quasigroups VII: permutation characters (English)
Author: Johnson, K. W.
Author: Smith, J. D. H.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 45
Issue: 2
Year: 2004
Pages: 265-273
.
Category: math
.
Summary: Each homogeneous space of a quasigroup affords a representation of the Bose-Mesner algebra of the association scheme given by the action of the multiplication group. The homogeneous space is said to be faithful if the corresponding representation of the Bose-Mesner algebra is faithful. In the group case, this definition agrees with the usual concept of faithfulness for transitive permutation representations. A permutation character is associated with each quasigroup permutation representation, and specialises appropriately for groups. However, in the quasigroup case the character of the homogeneous space determined by a subquasigroup need not be obtained by induction from the trivial character on the subquasigroup. The number of orbits in a quasigroup permutation representation is shown to be equal to the multiplicity with which its character includes the trivial character. (English)
Keyword: quasigroup
Keyword: association scheme
Keyword: permutation character
MSC: 05E30
MSC: 20C99
MSC: 20N05
idZBL: Zbl 1101.20037
idMR: MR2075274
.
Date available: 2009-05-05T16:44:57Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119455
.
Reference: [1] Barnsley M.F.: Fractals Everywhere.Academic Press, San Diego, CA, 1988. Zbl 0784.58002, MR 0977274
Reference: [2] Chari V., Pressley A.N.: A Guide to Quantum Groups.Cambridge University Press, Cambridge, 1994. Zbl 0839.17010, MR 1300632
Reference: [3] Johnson K.W., Smith J.D.H.: Characters of finite quasigroups.Eur. J. Comb. 5 (1984), 43-50. Zbl 0537.20042, MR 0746044
Reference: [4] Johnson K.W., Smith J.D.H.: Characters of finite quasigroups II: induced characters.Eur. J. Comb. 7 (1986), 131-137. Zbl 0599.20110, MR 0856325
Reference: [5] Johnson K.W., Smith J.D.H.: Characters of finite quasigroups III: quotients and fusion.Eur. J. Comb. 10 (1989), 47-56. Zbl 0667.20053, MR 0977179
Reference: [6] Johnson K.W., Smith J.D.H.: Characters of finite quasigroups IV: products and superschemes.Eur. J. Comb. 10 (1989), 257-263. Zbl 0669.20053, MR 1029172
Reference: [7] Johnson K.W., Smith J.D.H.: Characters of finite quasigroups V: linear characters.Eur. J. Comb. 10 (1989), 449-456. Zbl 0679.20059, MR 1014553
Reference: [8] Johnson K.W., Smith J.D.H., Song S.Y.: Characters of finite quasigroups VI: critical examples and doubletons.Eur. J. Comb. 11 (1990), 267-275. Zbl 0704.20056, MR 1059557
Reference: [9] Mack G., Schomerus V.: Conformal field algebras with quantum symmetry from the theory of superselection sectors.Comm. Math. Phys. 134 (1990), 139-196. Zbl 0715.17028, MR 1079804
Reference: [10] Penrose P.: A generalised inverse for matrices.Proc. Cambridge. Phil. Soc. 51 (1955), 406-413. MR 0069793
Reference: [11] Smith J.D.H.: Centraliser rings of multiplication groups on quasigroups.Math. Proc. Cambridge Phil. Soc. 79 (1976), 427-431. Zbl 0335.20035, MR 0399333
Reference: [12] Smith J.D.H.: Quasigroup actions: Markov chains, pseudoinverses, and linear representations.Southeast Asia Bull. Math. 23 (1999), 719-729. Zbl 0944.20059, MR 1810836
Reference: [13] Smith J.D.H.: Quasigroup homogeneous spaces and linear representations.J. Algebra 241 (2001), 193-203. Zbl 0994.20054, MR 1838850
Reference: [14] Smith J.D.H.: A coalgebraic approach to quasigroup permutation representations.Algebra Universalis 48 (2002), 427-438. Zbl 1068.20070, MR 1967091
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_45-2004-2_7.pdf 210.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo