Full entry |
PDF
(0.2 MB)
Feedback

loops; gyrogroups; gyrovector spaces; hyperbolic geometry; Einstein addition; Möbius transformation

References:

[1] Ahlfors L.V.: **Möbius transformations in several dimensions**. Univ. of Minnesota School of Mathematics, Minneapolis, Minnesota, 1981. MR 0725161 | Zbl 0663.30001

[2] Bottema O.: **On the medians of a triangle in hyperbolic geometry**. Canad. J. Math. 10 502-506 (1958). MR 0100247 | Zbl 0084.37403

[3] Chen J.-L., Ungar A.A.: **The Bloch gyrovector**. Found. Phys. 32 4 531-565 (2002). MR 1903786

[4] Csörgö P.: **H-connected transversals to abelian subgroups**. preprint.

[5] Einstein A.: **Zur Elektrodynamik Bewegter Körper [On the electrodynamics of moving bodies]**. Ann. Physik (Leipzig) 17 891-921 (1905).

[6] Einstein A.: **Einstein's Miraculous Years: Five Papers that Changed the Face of Physics**. Princeton, Princeton, NJ, 1998. Edited and introduced by John Stachel. Includes bibliographical references. Einstein's dissertation on the determination of molecular dimensions - Einstein on Brownian motion - Einstein on the theory of relativity - Einstein's early work on the quantum hypothesis. A new English translation of Einstein's 1905 paper on pp.123-160.

[7] Fock V.: **The Theory of Space, Time and Gravitation**. The Macmillan Co., New York, 1964. Second revised edition. Translated from the Russian by N. Kemmer. A Pergamon Press Book. MR 0162586 | Zbl 0112.43804

[8] Foguel T., Ungar A.A.: **Involutory decomposition of groups into twisted subgroups and subgroups**. J. Group Theory 3 (1) 27-46 (2000). MR 1736515 | Zbl 0944.20053

[9] Foguel T., Ungar A.A.: **Gyrogroups and the decomposition of groups into twisted subgroups and subgroups**. Pacific J. Math. 197:1 1-11 (2001). MR 1810204 | Zbl 1066.20068

[10] Foguel T., Kinyon M.K., Phillip J.D.: **On twisted subgroups and Bol loops of odd order**. Rocky Mountain J. Math., in print. MR 2228190

[11] Hausner M.: **A Vector Space Approach to Geometry**. Dover Publications Inc., Mineola, NY, 1998. Reprint of the 1965 original. MR 1651732 | Zbl 0924.51001

[13] Kinyon M.K., Ungar A.A.: **The gyro-structure of the complex unit disk**. Math. Mag. 73:4 273-284 (2000). MR 1822756

[14] Kuznetsov E.: **Transversals in loops**. preprint.

[15] Lévay P.: **The geometry of entanglement: metrics, connections and the geometric phase**. arXiv:quant-ph/0306115 v1 2003. MR 2044194

[16] Lévay P.: **Mixed state geometric phase from Thomas rotations**. arXiv:quant-ph/0312023 v1 2003.

[17] Ratcliffe J.G.: **Foundations of hyperbolic manifolds**. vol. 149 of {Graduate Texts in Mathematics}, Springer-Verlag, New York, 1994. MR 1299730 | Zbl 1106.51009

[18] Sabinin L.V., Sabinina L.L., Sbitneva L.V.: **On the notion of gyrogroup**. Aequationes Math. 56 (1-2) 11-17 (1998). MR 1628291 | Zbl 0923.20051

[19] Sexl R.U., Urbantke H.K.: **Relativity, Groups, Particles**. Springer-Verlag, Vienna, 2001. Special relativity and relativistic symmetry in field and particle physics; revised and translated from the third German (1992) edition by Urbantke. MR 1798479 | Zbl 1057.83001

[20] Ungar A.A.: **The relativistic noncommutative nonassociative group of velocities and the Thomas rotation**. Resultate Math. 16 (1-2) (1989), 168-179. The term ``K-loop'' is coined here. MR 1020224 | Zbl 0693.20067

[21] Ungar A.A.: **Extension of the unit disk gyrogroup into the unit ball of any real inner product space**. J. Math. Anal. Appl. 202:3 1040-1057 (1996). MR 1408366 | Zbl 0865.20055

[22] Ungar A.A.: **The hyperbolic Pythagorean theorem in the Poincaré disc model of hyperbolic geometry**. Amer. Math. Monthly 106:8 759-763 (1999). MR 1718602 | Zbl 1004.51025

[23] Ungar A.A.: **Beyond the Einstein addition law and its gyroscopic Thomas precession**. volume 117 of {Fundamental Theories of Physics}, Kluwer Academic Publishers Group, Dordrecht, 2001. The theory of gyrogroups and gyrovector spaces. MR 1978122 | Zbl 0972.83002

[24] Ungar A.A.: **The hyperbolic geometric structure of the density matrix for mixed state qubits**. Found. Phys. 32 11 1671-1699 (2002). MR 1954912

[25] Ungar A.A.: **On the unification of hyperbolic and Euclidean geometry**. Complex Variables Theory Appl. 49 (2004), 197-213. MR 2046396 | Zbl 1068.30038

[26] Ungar A.A.: **Einstein's special relativity: Unleashing the power of its hyperbolic geometry**. preprint, 2004. MR 2187176 | Zbl 1071.83505