Title:
|
A class of Bol loops with a subgroup of index two (English) |
Author:
|
Vojtěchovský, Petr |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
45 |
Issue:
|
2 |
Year:
|
2004 |
Pages:
|
371-381 |
. |
Category:
|
math |
. |
Summary:
|
Let $G$ be a finite group and $C_2$ the cyclic group of order $2$. Consider the $8$ multiplicative operations $(x,y)\mapsto (x^iy^j)^k$, where $i$, $j$, $k\in\{-1,\,1\}$. Define a new multiplication on $G\times C_2$ by assigning one of the above $8$ multiplications to each quarter $(G\times\{i\})\times(G\times\{j\})$, for $i, j\in C_2$. We describe all situations in which the resulting quasigroup is a Bol loop. This paper also corrects an error in P. Vojt\v{e}chovsk'y: On the uniqueness of loops $M(G,2)$. (English) |
Keyword:
|
Moufang loops |
Keyword:
|
loops $M(G, 2)$ |
Keyword:
|
inverse property loops |
Keyword:
|
Bol loops |
MSC:
|
20A05 |
MSC:
|
20N05 |
idZBL:
|
Zbl 1101.20048 |
idMR:
|
MR2075284 |
. |
Date available:
|
2009-05-05T16:45:51Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119465 |
. |
Reference:
|
[1] Burn R.P.: Finite Bol loops.Math. Proc. Cambridge Philos. Soc. 84 (1978), 3 377-385. Zbl 0385.20043, MR 0492030 |
Reference:
|
[2] Chein O.: Moufang loops of small order.Memoirs of the American Mathematical Society, Volume 13, Issue 1, Number 197 (1978). Zbl 0378.20053, MR 0466391 |
Reference:
|
[3] Chein O., Pflugfelder H.O.: The smallest Moufang loop.Arch. Math. 22 (1971), 573-576. Zbl 0241.20061, MR 0297914 |
Reference:
|
[4] Drápal A.: How far apart can the group multiplication tables be?.European Journal of Combinatorics 13 (1992), 335-343. MR 1181074 |
Reference:
|
[5] Drápal A.: Non-isomorphic $2$-groups coincide at most in three quarters of their multiplication tables.European Journal of Combinatorics 21 (2000), 301-321. MR 1750166 |
Reference:
|
[6] Drápal A., Vojtěchovský P.: Moufang loops that share associator and three quarters of their multiplication tables.submitted. |
Reference:
|
[7] Goodaire E.G., May S., Raman M.: The Moufang Loops of Order less than $64$.Nova Science Publishers, 1999. Zbl 0964.20043, MR 1689624 |
Reference:
|
[8] Nagy G.P., Vojtěchovský P.: LOOPS.a package for GAP 4.3. Download GAP at http://www-gap.dcs.st-and.ac.uk/ gap. Download a beta version of LOOPS at http://www.math.du.edu/loops/loops.html. |
Reference:
|
[9] Pflugfelder H.O.: Quasigroups and Loops: Introduction.Sigma series in pure mathematics 7, Heldermann Verlag, Berlin, 1990. Zbl 0715.20043, MR 1125767 |
Reference:
|
[10] Rotman J.J.: The Theory of Groups: An Introduction.Allyn and Bacon, Inc., 1965. Zbl 0262.20001, MR 0204499 |
Reference:
|
[11] Vojtěchovský P.: On the uniqueness of loops $M(G,2)$.Comment. Math. Univ. Carolinae 44 (2003), 4 629-365. Zbl 1101.20047, MR 2062879 |
Reference:
|
[12] Vojtěchovský P.: The smallest Moufang loop revisited.Results in Mathematics 44 (2003), 189-193. Zbl 1050.20046, MR 2011917 |
. |