Previous |  Up |  Next

Article

Title: A class of Bol loops with a subgroup of index two (English)
Author: Vojtěchovský, Petr
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 45
Issue: 2
Year: 2004
Pages: 371-381
.
Category: math
.
Summary: Let $G$ be a finite group and $C_2$ the cyclic group of order $2$. Consider the $8$ multiplicative operations $(x,y)\mapsto (x^iy^j)^k$, where $i$, $j$, $k\in\{-1,\,1\}$. Define a new multiplication on $G\times C_2$ by assigning one of the above $8$ multiplications to each quarter $(G\times\{i\})\times(G\times\{j\})$, for $i, j\in C_2$. We describe all situations in which the resulting quasigroup is a Bol loop. This paper also corrects an error in P. Vojt\v{e}chovsk'y: On the uniqueness of loops $M(G,2)$. (English)
Keyword: Moufang loops
Keyword: loops $M(G, 2)$
Keyword: inverse property loops
Keyword: Bol loops
MSC: 20A05
MSC: 20N05
idZBL: Zbl 1101.20048
idMR: MR2075284
.
Date available: 2009-05-05T16:45:51Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119465
.
Reference: [1] Burn R.P.: Finite Bol loops.Math. Proc. Cambridge Philos. Soc. 84 (1978), 3 377-385. Zbl 0385.20043, MR 0492030
Reference: [2] Chein O.: Moufang loops of small order.Memoirs of the American Mathematical Society, Volume 13, Issue 1, Number 197 (1978). Zbl 0378.20053, MR 0466391
Reference: [3] Chein O., Pflugfelder H.O.: The smallest Moufang loop.Arch. Math. 22 (1971), 573-576. Zbl 0241.20061, MR 0297914
Reference: [4] Drápal A.: How far apart can the group multiplication tables be?.European Journal of Combinatorics 13 (1992), 335-343. MR 1181074
Reference: [5] Drápal A.: Non-isomorphic $2$-groups coincide at most in three quarters of their multiplication tables.European Journal of Combinatorics 21 (2000), 301-321. MR 1750166
Reference: [6] Drápal A., Vojtěchovský P.: Moufang loops that share associator and three quarters of their multiplication tables.submitted.
Reference: [7] Goodaire E.G., May S., Raman M.: The Moufang Loops of Order less than $64$.Nova Science Publishers, 1999. Zbl 0964.20043, MR 1689624
Reference: [8] Nagy G.P., Vojtěchovský P.: LOOPS.a package for GAP 4.3. Download GAP at http://www-gap.dcs.st-and.ac.uk/ gap. Download a beta version of LOOPS at http://www.math.du.edu/loops/loops.html.
Reference: [9] Pflugfelder H.O.: Quasigroups and Loops: Introduction.Sigma series in pure mathematics 7, Heldermann Verlag, Berlin, 1990. Zbl 0715.20043, MR 1125767
Reference: [10] Rotman J.J.: The Theory of Groups: An Introduction.Allyn and Bacon, Inc., 1965. Zbl 0262.20001, MR 0204499
Reference: [11] Vojtěchovský P.: On the uniqueness of loops $M(G,2)$.Comment. Math. Univ. Carolinae 44 (2003), 4 629-365. Zbl 1101.20047, MR 2062879
Reference: [12] Vojtěchovský P.: The smallest Moufang loop revisited.Results in Mathematics 44 (2003), 189-193. Zbl 1050.20046, MR 2011917
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_45-2004-2_17.pdf 230.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo