Previous |  Up |  Next

Article

Title: Tensor products in the category of topological vector spaces are not associative (English)
Author: Glöckner, Helge
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 45
Issue: 4
Year: 2004
Pages: 607-614
.
Category: math
.
Summary: We show by example that the associative law does not hold for tensor products in the category of general (not necessarily locally convex) topological vector spaces. The same pathology occurs for tensor products of Hausdorff abelian topological groups. (English)
Keyword: topological tensor product
Keyword: associative law
Keyword: non-locally convex space
MSC: 22A05
MSC: 46A16
MSC: 46A32
MSC: 46M05
idZBL: Zbl 1103.46001
idMR: MR2103079
.
Date available: 2009-05-05T16:47:58Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119489
.
Reference: [1] Akmalov N.A.: Topologies in the tensor product of abelian groups (in Russian).Dokl. Akad. Nauk UzSSR (1980), 1 3-6. MR 0584817
Reference: [2] Bertram W., Glöckner H., Neeb K.-H.: Differential calculus over general base fields and rings.Exp. Math. 22 (2004), 213-282. Zbl 1099.58006, MR 2069671
Reference: [3] Bourbaki N.: Topological Vector Spaces, Chapters 1-5.Springer, Berlin, 1987. Zbl 1106.46003, MR 0910295
Reference: [4] Cohn P.M.: Algebra, Vol. II.2nd Ed., John Wiley, Chichester, 1989. MR 1006872
Reference: [5] Despland J.C.: Produit tensoriels de deux éspaces de Banach.Rev. Roumaine Math. Pures Appl. 27 (1982), 25-32. MR 0658862
Reference: [6] Garling D.J.H.: Tensor products of topological Abelian groups.J. Reine Angew. Math. 223 (1966), 164-182. Zbl 0145.03401, MR 0199305
Reference: [7] Iyahen S.O.: On certain classes of linear topological spaces II.J. London Math. Soc. 3 (1971), 609-617. Zbl 0215.19402, MR 0287272
Reference: [8] Grothendieck A.: Produit tensoriels topologiques et éspaces nucléaires.Mem. Amer. Math. Soc. 1955 (1955), no. 16, 140 pp. MR 0075539
Reference: [9] Hofmann K.H.: Tensorprodukte lokal kompakter topologischer Gruppen.J. Reine Angew. Math. 216 (1964), 134-149. MR 0167562
Reference: [10] Hollstein R.: Über die Metrisierbarkeit von projektiven Tensorprodukten.Manuscripta Math. 9 (1973), 201-209. Zbl 0253.46131, MR 0328529
Reference: [11] Loth P.: Topologically pure extensions.pp.191-201 in: ``Abelian Groups, Rings and Modules'' (Perth, 2000), Contemp. Math. 273, AMS, Providence, 2001. Zbl 0980.22007, MR 1817162
Reference: [12] Sahleh H.: Tensor product of abelian topological groups and $2$nd nilpotent.Int. Math. J. 2 (2002), 11 1081-1087. MR 1930752
Reference: [13] Turpin Ph.: Sur certains produits tensoriels topologiques.C.R. Acad. Sci. Paris, Sér. A 291 (1980), 405-407. Zbl 0461.46050, MR 0596084
Reference: [14] Turpin Ph.: Produits tensoriels d'espaces vectoriels topologiques.Bull. Soc. Math. Fr. 110 (1982), 3-13. Zbl 0494.46061, MR 0662126
Reference: [15] Tomášek S.: On tensor products of Abelian groups.Comment. Math. Univ. Carolinae 6 (1965), 73-83. MR 0180839
Reference: [16] Tomášek S.: Some remarks on tensor products.ibid. 6 (1965), 85-96. MR 0180840
Reference: [17] Waelbroeck L.: The tensor product of a locally pseudo-convex and a nuclear space.Studia Math. 38 (1970), 101-104. Zbl 0206.13201, MR 0275111
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_45-2004-4_5.pdf 211.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo