Previous |  Up |  Next

Article

Title: Congruence schemes and their applications (English)
Author: Chajda, I.
Author: Radelecki, S.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 46
Issue: 1
Year: 2005
Pages: 1-14
.
Category: math
.
Summary: Using congruence schemes we formulate new characterizations of congruence distributive, arithmetical and majority algebras. We prove new properties of the tolerance lattice and of the lattice of compatible reflexive relations of a majority algebra and generalize earlier results of H.-J. Bandelt, G. Cz'{e}dli and the present authors. Algebras whose congruence lattices satisfy certain 0-conditions are also studied. (English)
Keyword: congruence schemes
Keyword: majority algebra
Keyword: tolerance lattice
Keyword: 0-conditions
MSC: 06D15
MSC: 08A10
MSC: 08A30
idZBL: Zbl 1121.08001
idMR: MR2175854
.
Date available: 2009-05-05T16:49:06Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119503
.
Reference: [1] Bandelt H.-J.: Tolerance relations on lattices.Bull. Austral. Math. Soc. 23 (1981), 367-381. Zbl 0449.06005, MR 0625179
Reference: [2] Burris S., Sankappanavar H.P.: A Course in Universal Algebra.Springer, New York, 1981. Zbl 0478.08001, MR 0648287
Reference: [3] Chajda I.: Algebraic theory of tolerance relations.Univerzita Palackého Olomouc, Olomouc, 1991. Zbl 0747.08001
Reference: [4] Chajda I.: A note on the triangular scheme.East-West J. Math. 3 1 (2001), 79-80. Zbl 1007.08002, MR 1866645
Reference: [5] Chajda I., Horváth E.K.: A triangular scheme for congruence distributivity.Acta Math. Sci. Szeged 68 (2002), 29-35. Zbl 0997.08001, MR 1916565
Reference: [6] Chajda I., Czédli G., Horváth E.K.: Trapezoid lemma and congruence distributivity.Math. Slovaca 53 (2003), 247-253. Zbl 1058.08007, MR 2025021
Reference: [7] Chajda I., Radeleczki S.: $0$-conditions and tolerance schemes.Acta Math. Univ. Comenianae 72 2 (2003), 177-184. Zbl 1087.08002, MR 2040261
Reference: [8] Czédli G., Horváth E.K.: Congruence distributivity and modularity permit tolerances.Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 41 (2002), 43-53. Zbl 1043.08002, MR 1967339
Reference: [9] Czédli G., Lenkehegyi A.: On classes of ordered algebras and quasiorder distributivity.Acta Sci. Math. 46 (1983), 41-54. MR 0739021
Reference: [10] Czédli G., Horváth E.K., Radeleczki S.: On tolerance lattices of algebras in congruence modular varieties.Acta Math. Hungar. 100 (1-2) (2003), 9-17. Zbl 1049.08007, MR 1984855
Reference: [11] Grillet P.A., Varlet J.C.: Complementedness conditions in lattices.Bull. Soc. Roy. Sci. Liège 36 (1967), 628-642. Zbl 0157.34202, MR 0228389
Reference: [12] Gumm H.-P.: Geometrical methods in congruence modular algebras.Mem. Amer. Math. Soc. 45 286 (1983). Zbl 0547.08006, MR 0714648
Reference: [13] Pinus A.G., Chajda I.: Quasiorders on universal algebras.Algebra i Logika 32 3 (1993), 308-325 (in Russian). Zbl 0824.08002, MR 1286557
Reference: [14] Radeleczki S., Schweigert D.: Lattices with complemented tolerance lattice.Czechoslovak Math. J. 54 (129) (2004), 2 407-412. Zbl 1080.06006, MR 2059261
Reference: [15] Stern M.: Semimodular Lattices, Theory and Applications.Cambridge University Press, Cambridge, New York, Melbourne, 1999. MR 1695504
Reference: [16] Varlet J.C.: A generalization of the notion of pseudo-complementedness.Bull. Soc. Roy. Sci. Liège 37 (1968), 149-158. Zbl 0162.03501, MR 0228390
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_46-2005-1_1.pdf 252.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo