Previous |  Up |  Next

Article

Title: Cardinal inequalities implying maximal resolvability (English)
Author: Balcerzak, Marek
Author: Natkaniec, Tomasz
Author: Terepeta, Małgorzata
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 46
Issue: 1
Year: 2005
Pages: 85-91
.
Category: math
.
Summary: We compare several conditions sufficient for maximal resolvability of topo\-lo\-gi\-cal spaces. We prove that a space $X$ is maximally resolvable provided that for a dense set $X_0\subset X$ and for each $x\in X_0$ the $\pi$-character of $X$ at $x$ is not greater than the dispersion character of $X$. On the other hand, we show that this implication is not reversible even in the class of card-homogeneous spaces. (English)
Keyword: maximally resolvable space
Keyword: base at a point
Keyword: $\pi$-base
Keyword: $\pi$-character
MSC: 54A10
MSC: 54A25
idZBL: Zbl 1121.54008
idMR: MR2175861
.
Date available: 2009-05-05T16:49:46Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119510
.
Reference: [B] Bella A.: The density topology is extraresolvable.Atti Sem. Mat. Fis. Univ. Modena 48 (2000), 495-498. Zbl 1013.54001, MR 1811549
Reference: [BT] Bienias J., Terepeta M.: A sufficient condition for maximal resolvability of topological spaces.Comment. Math. Univ. Carolinae 45 (2004), 139-144. Zbl 1100.54003, MR 2076865
Reference: [CGF] Comfort W.W., Garcia-Ferreira S.: Resolvability: a selective survey and some new results.Topology Appl. 74 (1996), 149-167. Zbl 0866.54004, MR 1425934
Reference: [E] Engelking R.: General Topology.PWN, Warsaw, 1977. Zbl 0684.54001, MR 0500780
Reference: [Ha] Hashimoto H.: On the $*$-topology and its application.Fund. Math. 91 (1976), 5-10. MR 0413058
Reference: [Ho] Hodel R.: Cardinals functions I.in: Handbook of Set-Theoretic Topology, Elsevier, Amsterdam, 1984, pp.1-61. MR 0776620
Reference: [J] Juhasz I.: Cardinals functions II.in: Handbook of Set-Theoretic Topology, Elsevier, Amsterdam, 1984, pp.63-109. MR 0776621
Reference: [M] Monk J.D.: Appendix on set theory.in: Handbook of Boolean Algebras, vol. 3, Elsevier, Amsterdam, 1989, pp.1215-1233. MR 0991617
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_46-2005-1_8.pdf 208.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo