Previous |  Up |  Next

Article

Title: Properties of one-point completions of a noncompact metrizable space (English)
Author: Henriksen, M.
Author: Janos, L.
Author: Woods, R. G.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 46
Issue: 1
Year: 2005
Pages: 105-123
.
Category: math
.
Summary: If a metrizable space $X$ is dense in a metrizable space $Y$, then $Y$ is called a {\it metric extension\/} of $X$. If $T_{1}$ and $T_{2}$ are metric extensions of $X$ and there is a continuous map of $T_{2}$ into $T_{1}$ keeping $X$ pointwise fixed, we write $T_{1}\leq T_{2}$. If $X$ is noncompact and metrizable, then $(\Cal M (X),\leq)$ denotes the set of metric extensions of $X$, where $T_{1}$ and $T_{2}$ are identified if $T_{1}\leq T_{2}$ and $T_{2}\leq T_{1}$, i.e., if there is a homeomorphism of $T_{1}$ onto $T_{2}$ keeping $X$ pointwise fixed. $(\Cal M(X),\leq)$ is a large complicated poset studied extensively by V. Bel'nov [{\it The structure of the set of metric extensions of a noncompact metrizable space\/}, Trans. Moscow Math. Soc. {\bf 32} (1975), 1--30]. We study the poset $(\Cal E (X),\leq)$ of one-point metric extensions of a locally compact metrizable space $X$. Each such extension is a (Cauchy) completion of $X$ with respect to a compatible metric. This poset resembles the lattice of compactifications of a locally compact space if $X$ is also separable. For Tychonoff $X$, let $X^{\ast}=\beta X\backslash X$, and let $\Cal Z(X)$ be the poset of zerosets of $X$ partially ordered by set inclusion. \newline {\bf Theorem} {\sl If $\,X$ and $Y$ are locally compact separable metrizable spaces, then $(\Cal E(X),\leq)$ and $(\Cal E (Y),\leq)$ are order-isomorphic iff $\,\Cal Z (X^{\ast})$ and $\Cal Z(Y^{\ast})$ are order-isomorphic, and iff $\,X^{\ast}$ and $Y^{\ast}$ are homeomorphic\/}. We construct an order preserving bijection $\lambda : \Cal E (X)\rightarrow \Cal Z (X^{\ast})$ such that a one-point completion in $\Cal E (X)$ is locally compact iff its image under $\lambda$ is clopen. We extend some results to the nonseparable case, but leave problems open. In a concluding section, we show how to construct one-point completions geometrically in some explicit cases. (English)
Keyword: metrizable
Keyword: metric extensions and completions
Keyword: completely metrizable
Keyword: one-point metric extensions
Keyword: extension traces
Keyword: zerosets
Keyword: clopen sets
Keyword: Stone-Čech compactification
Keyword: $\beta X\backslash X$
Keyword: hedgehog
MSC: 54D35
MSC: 54E35
MSC: 54E45
MSC: 54E50
idZBL: Zbl 1121.54048
idMR: MR2175863
.
Date available: 2009-05-05T16:49:57Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119512
.
Reference: [A71] Alexander C.C.: Metrically isolated sets.Amer. Math. Monthly 78 (1971), 892-895. Zbl 0223.54016, MR 0290329
Reference: [B74] Bel'nov V.K.: Some theorems on metric extensions.Trans. Moscow Math. Soc. 30 (1974), 119-138. MR 0385812
Reference: [B75] Bel'nov V.K.: The structure of set of metric extensions of a noncompact metrizable space.Trans. Moscow Math. Soc. 32 (1975), 1-30. MR 0423309
Reference: [DH99] Dow A., Hart K.P.: $ømega^{\ast}$ has (almost) no continuous images.Israel J. Math. 109 (1999), 29-39. Zbl 0931.54024, MR 1679586
Reference: [E89] Engelking R.: General Topology.Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [FGO93] Fitzpatrick B., Gruenhage G., Ott J.: Topological completions of metrizable spaces.Proc. Amer. Math. Soc. 117 (1993), 259-267. Zbl 0766.54022, MR 1110542
Reference: [GJ76] Gillman L., Jerison M.: Rings of Continuous Functions Springer, New York, 1976.. MR 0407579
Reference: [Ma68] Magill K.: The lattice of compactifications of locally compact space.Proc. London Math. Soc. 18 (1968), 231-244. MR 0229209
Reference: [Mi82] van Mill J.: Weak P-points in Čech-Stone compactifications.Trans. Amer. Math. Soc. 273 (1982), 657-678. Zbl 0498.54022, MR 0667166
Reference: [MRW72] Mack J., Rayburn M.C., Woods R.G.: Local topological properties and one-point extensions.Canadian J. Math. 24 (1972), 338-348. Zbl 0242.54019, MR 0295297
Reference: [MRW74] ibid: Lattices of topological extensions.Trans. Amer. Math. Soc. 189 (1974), 163-174. MR 0350700
Reference: [PW87] Porter J., Woods R.G.: Extension and Absolutes of Hausdorff Spaces.Springer, New York, 1987. MR 0918341
Reference: [Ra73] Rayburn M.C.: On Hausdorff compactifications.Pacific J. Math 44 (1973), 707-71. Zbl 0257.54021, MR 0317277
Reference: [V87] Villani A.: Spaces with locally compact completions are compact.Amer. Math. Monthly 94 (1987), 863-865. Zbl 0639.54020, MR 0935843
Reference: [W71] Woods R.G.: Co-absolutes of remainders of $\beta X\backslash X$.Pacific J. Math. 37 (1971), 545-560. MR 0307179
Reference: [W74] Woods R.G.: Zero-dimensional compactifications of locally compact spaces.Canadian J. Math. 26 (1974), 920-930. Zbl 0287.54023, MR 0350699
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_46-2005-1_10.pdf 304.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo