Title:
|
Properties of one-point completions of a noncompact metrizable space (English) |
Author:
|
Henriksen, M. |
Author:
|
Janos, L. |
Author:
|
Woods, R. G. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
46 |
Issue:
|
1 |
Year:
|
2005 |
Pages:
|
105-123 |
. |
Category:
|
math |
. |
Summary:
|
If a metrizable space $X$ is dense in a metrizable space $Y$, then $Y$ is called a {\it metric extension\/} of $X$. If $T_{1}$ and $T_{2}$ are metric extensions of $X$ and there is a continuous map of $T_{2}$ into $T_{1}$ keeping $X$ pointwise fixed, we write $T_{1}\leq T_{2}$. If $X$ is noncompact and metrizable, then $(\Cal M (X),\leq)$ denotes the set of metric extensions of $X$, where $T_{1}$ and $T_{2}$ are identified if $T_{1}\leq T_{2}$ and $T_{2}\leq T_{1}$, i.e., if there is a homeomorphism of $T_{1}$ onto $T_{2}$ keeping $X$ pointwise fixed. $(\Cal M(X),\leq)$ is a large complicated poset studied extensively by V. Bel'nov [{\it The structure of the set of metric extensions of a noncompact metrizable space\/}, Trans. Moscow Math. Soc. {\bf 32} (1975), 1--30]. We study the poset $(\Cal E (X),\leq)$ of one-point metric extensions of a locally compact metrizable space $X$. Each such extension is a (Cauchy) completion of $X$ with respect to a compatible metric. This poset resembles the lattice of compactifications of a locally compact space if $X$ is also separable. For Tychonoff $X$, let $X^{\ast}=\beta X\backslash X$, and let $\Cal Z(X)$ be the poset of zerosets of $X$ partially ordered by set inclusion. \newline {\bf Theorem} {\sl If $\,X$ and $Y$ are locally compact separable metrizable spaces, then $(\Cal E(X),\leq)$ and $(\Cal E (Y),\leq)$ are order-isomorphic iff $\,\Cal Z (X^{\ast})$ and $\Cal Z(Y^{\ast})$ are order-isomorphic, and iff $\,X^{\ast}$ and $Y^{\ast}$ are homeomorphic\/}. We construct an order preserving bijection $\lambda : \Cal E (X)\rightarrow \Cal Z (X^{\ast})$ such that a one-point completion in $\Cal E (X)$ is locally compact iff its image under $\lambda$ is clopen. We extend some results to the nonseparable case, but leave problems open. In a concluding section, we show how to construct one-point completions geometrically in some explicit cases. (English) |
Keyword:
|
metrizable |
Keyword:
|
metric extensions and completions |
Keyword:
|
completely metrizable |
Keyword:
|
one-point metric extensions |
Keyword:
|
extension traces |
Keyword:
|
zerosets |
Keyword:
|
clopen sets |
Keyword:
|
Stone-Čech compactification |
Keyword:
|
$\beta X\backslash X$ |
Keyword:
|
hedgehog |
MSC:
|
54D35 |
MSC:
|
54E35 |
MSC:
|
54E45 |
MSC:
|
54E50 |
idZBL:
|
Zbl 1121.54048 |
idMR:
|
MR2175863 |
. |
Date available:
|
2009-05-05T16:49:57Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119512 |
. |
Reference:
|
[A71] Alexander C.C.: Metrically isolated sets.Amer. Math. Monthly 78 (1971), 892-895. Zbl 0223.54016, MR 0290329 |
Reference:
|
[B74] Bel'nov V.K.: Some theorems on metric extensions.Trans. Moscow Math. Soc. 30 (1974), 119-138. MR 0385812 |
Reference:
|
[B75] Bel'nov V.K.: The structure of set of metric extensions of a noncompact metrizable space.Trans. Moscow Math. Soc. 32 (1975), 1-30. MR 0423309 |
Reference:
|
[DH99] Dow A., Hart K.P.: $ømega^{\ast}$ has (almost) no continuous images.Israel J. Math. 109 (1999), 29-39. Zbl 0931.54024, MR 1679586 |
Reference:
|
[E89] Engelking R.: General Topology.Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321 |
Reference:
|
[FGO93] Fitzpatrick B., Gruenhage G., Ott J.: Topological completions of metrizable spaces.Proc. Amer. Math. Soc. 117 (1993), 259-267. Zbl 0766.54022, MR 1110542 |
Reference:
|
[GJ76] Gillman L., Jerison M.: Rings of Continuous Functions Springer, New York, 1976.. MR 0407579 |
Reference:
|
[Ma68] Magill K.: The lattice of compactifications of locally compact space.Proc. London Math. Soc. 18 (1968), 231-244. MR 0229209 |
Reference:
|
[Mi82] van Mill J.: Weak P-points in Čech-Stone compactifications.Trans. Amer. Math. Soc. 273 (1982), 657-678. Zbl 0498.54022, MR 0667166 |
Reference:
|
[MRW72] Mack J., Rayburn M.C., Woods R.G.: Local topological properties and one-point extensions.Canadian J. Math. 24 (1972), 338-348. Zbl 0242.54019, MR 0295297 |
Reference:
|
[MRW74] ibid: Lattices of topological extensions.Trans. Amer. Math. Soc. 189 (1974), 163-174. MR 0350700 |
Reference:
|
[PW87] Porter J., Woods R.G.: Extension and Absolutes of Hausdorff Spaces.Springer, New York, 1987. MR 0918341 |
Reference:
|
[Ra73] Rayburn M.C.: On Hausdorff compactifications.Pacific J. Math 44 (1973), 707-71. Zbl 0257.54021, MR 0317277 |
Reference:
|
[V87] Villani A.: Spaces with locally compact completions are compact.Amer. Math. Monthly 94 (1987), 863-865. Zbl 0639.54020, MR 0935843 |
Reference:
|
[W71] Woods R.G.: Co-absolutes of remainders of $\beta X\backslash X$.Pacific J. Math. 37 (1971), 545-560. MR 0307179 |
Reference:
|
[W74] Woods R.G.: Zero-dimensional compactifications of locally compact spaces.Canadian J. Math. 26 (1974), 920-930. Zbl 0287.54023, MR 0350699 |
. |