Previous |  Up |  Next

Article

Title: Biharmonic morphisms (English)
Author: Chadli, Mustapha
Author: El Kadiri, Mohamed
Author: Haddad, Sabah
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 46
Issue: 1
Year: 2005
Pages: 145-159
.
Category: math
.
Summary: Let $(X, \Cal H)$ and $(X',\Cal H')$ be two strong biharmonic spaces in the sense of Smyrnelis whose associated harmonic spaces are Brelot spaces. A biharmonic morphism from $(X,\Cal H)$ to $(X',\Cal H')$ is a continuous map from $X$ to $X'$ which preserves the biharmonic structures of $X$ and $X'$. In the present work we study this notion and characterize in some cases the biharmonic morphisms between $X$ and $X'$ in terms of harmonic morphisms between the harmonic spaces associated with $(X,\Cal H)$ and $(X',\Cal H')$ and the coupling kernels of them. (English)
Keyword: harmonic space
Keyword: harmonic morphism
Keyword: biharmonic space
Keyword: biharmonic function
Keyword: biharmonic morphism
MSC: 31B30
MSC: 31C35
MSC: 31D05
idZBL: Zbl 1121.31004
idMR: MR2175867
.
Date available: 2009-05-05T16:50:19Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119516
.
Reference: [1] Bouleau N.: Espaces biharmoniques et couplages de processus de Markov.J. Math. Pures Appl. 58 (1979), 187-204. MR 0581988
Reference: [2] Bouleau N.: Thèse de Doctorat d'Etat ès Sciences.Université de Paris VI, 1979.
Reference: [3] Constantinescu C., Cornea A.: Compactifications of harmonic spaces.Nagoya Math. J. 25 (1965), 1-57. Zbl 0138.36701, MR 0174760
Reference: [4] Constantinescu C., Cornea A.: Potential Theory on Harmonic Spaces.Springer, Heidelberg, 1972. Zbl 0248.31011, MR 0419799
Reference: [5] Csink L., Fitzsimmons P.J., Øksendal B.: A stochastic characterization of harmonic morphisms.Math. Ann. 287 (1990), 1 1-18. MR 1048277
Reference: [6] Csink L., Øksendal B.: Stochastic harmonic morphisms: Functions mapping the paths of one diffusion into the paths of another.Ann. Inst. Fourier 33 (1983), 219-240. MR 0699496
Reference: [7] Dellacherie C., Meyer P.A.: Probabilités et Potentiel.Chapter I à IV, Hermann, Paris, 1975. Zbl 0624.60084, MR 0488194
Reference: [8] El Kadiri M.: Représentation intégrale dans le cadre de la théorie axiomatique des fonctions biharmoniques.Rev. Roumaine Math. Pures Appl. 42 (1997), 579-589. MR 1650389
Reference: [9] Fuglede B.: Harmonic morphisms between Riemannian manifolds.Ann. Inst. Fourier 28 (1978), 107-144. Zbl 0408.31011, MR 0499588
Reference: [10] Fuglede B.: Harmonic morphisms.Complex Analysis, Joensuu 1978, Proceedings (Eds. I. Laire, O. Lehto, T. Sorvali), Lecture Notes in Math. 747, Springer, Berlin, 1979, pp.123-132. Zbl 0948.53036, MR 0553035
Reference: [11] Helms L.L.: Introduction to Potential Theory.Wiley-Interscience, 1969. Zbl 0188.17203, MR 0261018
Reference: [12] Hervé R.M.: Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel.Ann. Inst. Fourier 12 (1962), 415-517. MR 0139756
Reference: [13] Nicolescu M.: Les fonctions polyharmoniques.Hermann, Paris, 1936.
Reference: [14] Smyrnelis E.P.: Axiomatique des fonctions biharmoniques, I.Ann. Inst. Fourier 25 1 (1975), 35-97. Zbl 0295.31006, MR 0382691
Reference: [15] Smyrnelis E.P.: Axiomatique des fonctions biharmoniques, II.Ann. Inst. Fourier 26 3 (1976), 1-47. MR 0477101
Reference: [16] Smyrnelis E.P.: Sur les fonctions hyperharmoniques d'ordre $2$.Lecture Notes in Math. 681, Springer, Berlin, 1978, pp.277-294. Zbl 0393.31004, MR 0521791
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_46-2005-1_14.pdf 259.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo