Title:
|
Weak alg-universality and $Q$-universality of semigroup quasivarieties (English) |
Author:
|
Demlová, M. |
Author:
|
Koubek, V. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
46 |
Issue:
|
2 |
Year:
|
2005 |
Pages:
|
257-279 |
. |
Category:
|
math |
. |
Summary:
|
In an earlier paper, the authors showed that standard semigroups $\bold M_1$, $\bold M_2$ and $\bold M_3$ play an important role in the classification of weaker versions of alg-universality of semigroup varieties. This paper shows that quasivarieties generated by $\bold M_2$ and $\bold M_3$ are neither relatively alg-universal nor $Q$-universal, while there do exist finite semigroups $\bold S_2$ and $\bold S_3$ generating the same semigroup variety as $\bold M_2$ and $\bold M_3$ respectively and the quasivarieties generated by $\bold S_2$ and/or $\bold S_3$ are quasivar-relatively $f\!f$-alg-universal and $Q$-universal (meaning that their respective lattices of subquasivarieties are quite rich). An analogous result on $Q$-universality of the variety generated by $\bold M_2$ was obtained by M.V. Sapir; the size of our semigroup is substantially smaller than that of Sapir's semigroup. (English) |
Keyword:
|
semigroup quasivariety |
Keyword:
|
full embedding |
Keyword:
|
$f\!f$-alg-universality |
Keyword:
|
$Q$-universality |
MSC:
|
08C15 |
MSC:
|
18B15 |
MSC:
|
20M07 |
MSC:
|
20M99 |
idZBL:
|
Zbl 1120.20059 |
idMR:
|
MR2176891 |
. |
Date available:
|
2009-05-05T16:50:55Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119523 |
. |
Reference:
|
[1] Adámek J., Rosický J.: Locally Presentable and Accessible Categories.Cambridge University Press Cambridge (1994). MR 1294136 |
Reference:
|
[2] Adams M.E., Adaricheva K.V., Dziobiak W., Kravchenko A.V.: Some open questions related to the problem of Birkhoff and Maltsev.Studia Logica 78 (2004), 357-378. MR 2108035 |
Reference:
|
[3] Adams M.E., Dziobiak W.: $Q$-universal quasivarieties of algebras.Proc. Amer. Math. Soc. 120 (1994), 1053-1059. Zbl 0810.08007, MR 1172942 |
Reference:
|
[4] Adams M.E., Dziobiak W.: Lattices of quasivarieties of $3$-element algebras.J. of Algebra 166 (1994),181-210. Zbl 0806.08005, MR 1276823 |
Reference:
|
[5] Adams M.E., Dziobiak W.: Finite-to-finite universal quasivarieties are $Q$-universal.Algebra Universalis 46 (2001), 253-283. Zbl 1059.08002, MR 1835799 |
Reference:
|
[6] Adams M.E., Dziobiak W.: The lattice of quasivarieties of undirected graphs.Algebra Universalis 47 (2002), 7-11. Zbl 1059.08003, MR 1901728 |
Reference:
|
[7] Adams M.E., Dziobiak W.: Quasivarieties of idempotent semigroups.Internat. J. Algebra Comput. 13 (2003), 733-752. Zbl 1042.08002, MR 2028101 |
Reference:
|
[8] Demlová M., Koubek V.: Endomorphism monoids in varieties of bands.Acta Sci. Math. (Szeged) 66 (2000), 477-516. MR 1804205 |
Reference:
|
[9] Demlová M., Koubek V.: A weak version of universality in semigroup varieties.Novi Sad J. Math. 34 (2004), 37-86. MR 2136462 |
Reference:
|
[10] Gorbunov V.A.: Algebraic Theory of Quasivarieties.Plenum Publishing Co. New York (1998). Zbl 0986.08001, MR 1654844 |
Reference:
|
[11] Hedrlín Z., Lambek J.: How comprehensive is the category of semigroups?.J. Algebra 11 (1969), 195-212. MR 0237611 |
Reference:
|
[12] Koubek V., Sichler J.: Universal varieties of semigroups.J. Austral. Math. Soc. Ser. A 36 (1984), 143-152. Zbl 0549.20038, MR 0725742 |
Reference:
|
[13] Koubek V., Sichler J.: On relative universality and $Q$-universality.Studia Logica 78 (2004), 279-291. Zbl 1079.08009, MR 2108030 |
Reference:
|
[14] Koubek V., Sichler J.: Almost $ff$-universal and $Q$-universal varieties of modular $0$-lattices.Colloq. Math. 101 (2004), 161-182. Zbl 1066.06004, MR 2110722 |
Reference:
|
[15] Kravchenko A.V.: $Q$-universal quasivarieties of graphs.Algebra and Logic 41 (2002), 173-181. Zbl 1062.08013, MR 1934538 |
Reference:
|
[16] Mendelsohn E.: On a technique for representing semigroups as endomorphism semigroups of graphs with given properties.Semigroup Forum 4 (1972), 283-294. Zbl 0262.20083, MR 0304533 |
Reference:
|
[17] Pultr A., Trnková V.: Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories.North-Holland Amsterdam (1980). MR 0563525 |
Reference:
|
[18] Sapir M.V.: The lattice of quasivarieties of semigroups.Algebra Universalis 21 (1985), 172-180. Zbl 0599.08014, MR 0855737 |
Reference:
|
[19] Sizyi S.V.: Quasivarieties of graphs.Siberian Math. J. 35 (1994), 783-794. MR 1302441 |
. |