Title:
|
On the range of a closed operator in an $L_1$-space of vector-valued functions (English) |
Author:
|
Sato, Ryotaro |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
46 |
Issue:
|
2 |
Year:
|
2005 |
Pages:
|
349-367 |
. |
Category:
|
math |
. |
Summary:
|
Let $X$ be a reflexive Banach space and $A$ be a closed operator in an $L_1$-space of $X$-valued functions. Then we characterize the range $R(A)$ of $A$ as follows. Let $0\neq \lambda_{n}\in \rho(A)$ for all $1\leq n < \infty$, where $\rho(A)$ denotes the resolvent set of $A$, and assume that $\lim_{n\rightarrow \infty} \lambda_{n}=0$ and $\sup_{n\geq 1} \|\lambda_{n}(\lambda_{n}-A)^{-1}\| < \infty$. Furthermore, assume that there exists $\lambda_{\infty}\in \rho(A)$ such that $\|\lambda_{\infty}(\lambda_{\infty}-A)^{-1}\|\leq 1$. Then $f\in R(A)$ is equivalent to $\sup_{n\geq 1} \|(\lambda_{n}-A)^{-1}f\|_{1}<\infty$. This generalizes Shaw's result for scalar-valued functions. (English) |
Keyword:
|
reflexive Banach space |
Keyword:
|
$L_1$-space of vector-valued functions |
Keyword:
|
closed operator |
Keyword:
|
resolvent set |
Keyword:
|
range and domain |
Keyword:
|
linear contraction |
Keyword:
|
$C_0$-semigroup |
Keyword:
|
strongly continuous cosine family of operators |
MSC:
|
47A05 |
MSC:
|
47A35 |
MSC:
|
47B38 |
MSC:
|
47D06 |
MSC:
|
47D09 |
idZBL:
|
Zbl 1123.47012 |
idMR:
|
MR2176897 |
. |
Date available:
|
2009-05-05T16:51:29Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119529 |
. |
Reference:
|
[1] Assani I.: A note on the equation $y=(I-T)x$ in $L^{1}$.Illinois J. Math. 43 (1999), 540-541. MR 1700608 |
Reference:
|
[2] Browder F.E.: On the iteration of transformations in non-compact minimal dynamical systems.Proc. Amer. Math. Soc. 9 (1958), 773-780. Zbl 0092.12602, MR 0096975 |
Reference:
|
[3] Diestel J., Uhr J.J., Jr.: Vector Measures.Amer. Math. Soc., Providence, 1977. MR 0453964 |
Reference:
|
[4] Fonf V., Lin M., Rubinov A.: On the uniform ergodic theorem in Banach spaces that do not contain duals.Studia Math. 121 (1996), 67-85. Zbl 0861.47006, MR 1414895 |
Reference:
|
[5] Gottschalk W.H., Hedlund G.A.: Topological Dynamics.Amer. Math. Soc. Colloq. Publ. 36, Amer. Math. Soc., Providence, 1955. Zbl 0067.15204, MR 0074810 |
Reference:
|
[6] Krengel U., Lin M.: On the range of the generator of a Markovian semigroup.Math. Z. 185 (1984), 553-565. Zbl 0525.60080, MR 0733775 |
Reference:
|
[7] Li Y.-C., Sato R., Shaw S.-Y.: Boundedness and growth orders of means of discrete and continuous semigroups of operators.preprint. Zbl 1151.47048, MR 2410881 |
Reference:
|
[8] Lin M., Sine R.: Ergodic theory and the functional equation $(I-T)x=y$.J. Operator Theory 10 (1983), 153-166. Zbl 0553.47006, MR 0715565 |
Reference:
|
[9] Pazy A.: Semigroups of Linear Operators and Applications to Partial Differential Equations.Springer, New York, 1983. Zbl 0516.47023, MR 0710486 |
Reference:
|
[10] Sato R.: Solvability of the functional equation $f=(T-I)h$ for vector-valued functions.Colloq. Math. 99 (2004), 253-265. Zbl 1072.47010, MR 2079330 |
Reference:
|
[11] Shaw S.-Y.: On the range of a closed operator.J. Operator Theory 22 (1989), 157-163. Zbl 0703.47003, MR 1026079 |
Reference:
|
[12] Shaw S.-Y., Li Y.-C.: On solvability of $Ax=y$, approximate solutions, and uniform ergodicity.Rend. Circ. Mat. Palermo (2) Suppl. 2002, no. 68, part II, 805-819. Zbl 1050.47013, MR 1975488 |
Reference:
|
[13] Sova M.: Cosine operator functions.Rozprawy Mat. 49 (1966), 1-47. Zbl 0156.15404, MR 0193525 |
Reference:
|
[14] Travis C.C., Webb G.F.: Cosine families and abstract nonlinear second order differential equations.Acta Math. Acad. Sci. Hungar. 32 (1978), 75-96. Zbl 0388.34039, MR 0499581 |
Reference:
|
[15] Zygmund A.: Trigonometric Series.Vol. I, Cambridge University Press, Cambridge, 1959. Zbl 1084.42003, MR 0107776 |
. |