Previous |  Up |  Next

Article

Title: Countable sums and products of Loeb and selective metric spaces (English)
Author: Herrlich, Horst
Author: Keremedis, Kyriakos
Author: Tachtsis, Eleftherios
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 46
Issue: 2
Year: 2005
Pages: 373-384
.
Category: math
.
Summary: We investigate the role that weak forms of the axiom of choice play in countable Tychonoff products, as well as countable disjoint unions, of Loeb and selective metric spaces. (English)
Keyword: axiom of choice
Keyword: weak axioms of choice
Keyword: Loeb metric spaces
Keyword: selective metric spaces
Keyword: countable Tychonoff products of metric spaces
Keyword: countable sums of metric spaces
MSC: 03E25
MSC: 54A35
MSC: 54D45
MSC: 54E50
MSC: 54E99
idZBL: Zbl 1121.03063
idMR: MR2176899
.
Date available: 2009-05-05T16:51:41Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119531
.
Reference: [1] Herrlich H., Strecker G.E.: When is $\Bbb N$ Lindelöf?.Comment. Math. Univ. Carolinae 38 (1998), 553-556. MR 1485075
Reference: [2] Howard P., Rubin J.E.: Consequences of the Axiom of Choice.Amer. Math. Soc., Math. Surveys and Monographs, Vol. 59, Providence (RI), 1998. Zbl 0947.03001, MR 1637107
Reference: [3] Jech T.: The Axiom of Choice.North-Holland, Amsterdam, 1973. Zbl 0259.02052, MR 0396271
Reference: [4] Keremedis K.: The failure of the axiom of choice implies unrest in the theory of Lindelöf metric spaces.Math. Log. Quart. 49 2 (2003), 179-186. Zbl 1016.03051, MR 1961460
Reference: [5] Kelley J.: The Tychonoff product theorem implies the axiom of choice.Fund. Math. 37 (1950), 75-76. Zbl 0039.28202, MR 0039982
Reference: [6] Keremedis K.: Consequences of the failure of the axiom of choice in the theory of Lindelöf metric spaces.Math. Log. Quart. 50 2 (2004), 1-11. Zbl 1041.54022, MR 2037733
Reference: [7] Keremedis K., Tachtsis E.: On Lindelöf metric spaces and weak forms of the axiom of choice.Math. Log. Quart. 46 (2000), 35-44. Zbl 0952.03060, MR 1736648
Reference: [8] Keremedis K., Tachtsis E.: Compact metric spaces and weak forms of the axiom of choice.Math. Log. Quart. 47 (2001), 117-128. Zbl 0968.03057, MR 1808950
Reference: [9] Keremedis K., Tachtsis E.: On Loeb and weakly Loeb Hausdorff spaces.Sci. Math. Jpn. 53 (2001), 247-251. Zbl 0982.54001, MR 1828263
Reference: [10] Keremedis K., Tachtsis E.: Some weak forms of the axiom of choice restricted to the real line.Math. Log. Quart. 47 (2001), 413-422. Zbl 1001.03044, MR 1847457
Reference: [11] Keremedis K., Tachtsis E.: Countable sums and products of metrizable spaces in ZF.Math. Log. Quart. 51 1 (2005), 95-103. Zbl 1059.03048, MR 2099390
Reference: [12] Keremedis K., Tachtsis E.: Topology in the absence of the axiom of choice.Sci. Math. Jpn. 59 2 (2004), 357-406. Zbl 1066.54002, MR 2062202
Reference: [13] Keremedis K., Tachtsis E.: Weak axioms of choice for metric spaces.to appear in Proc. Amer. Math. Soc. Zbl 1090.03021, MR 2163609
Reference: [14] Kunen K.: Set Theory. An Introduction to Independence Proofs.North-Holland, Amsterdam, 1983. Zbl 0534.03026, MR 0756630
Reference: [15] Loeb P.A.: A new proof of the Tychonoff theorem.Amer. Math. Monthly 72 (1965), 711-717. Zbl 0146.18404, MR 0190896
Reference: [16] Tachtsis E.: Disasters in metric topology without choice.Comment. Math. Univ. Carolinae 43 1 (2002), 165-174. Zbl 1072.03030, MR 1903316
Reference: [17] Willard S.: General Topology.Addison-Wesley Publ. Co., Reading, 1970. Zbl 1052.54001, MR 0264581
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_46-2005-2_12.pdf 267.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo