Previous |  Up |  Next

Article

Title: Extending the structural homomorphism of LCC loops (English)
Author: Csörgö, Piroska
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 46
Issue: 3
Year: 2005
Pages: 385-389
.
Category: math
.
Summary: A loop $Q$ is said to be left conjugacy closed if the set $A=\{L_x/x\in Q\}$ is closed under conjugation. Let $Q$ be an LCC loop, let $\Cal L$ and $\Cal R$ be the left and right multiplication groups of $Q$ respectively, and let $I(Q)$ be its inner mapping group, $M(Q)$ its multiplication group. By Drápal's theorem [3, Theorem 2.8] there exists a homomorphism $\Lambda : \Cal L \to I(Q)$ determined by $L_x\to R^{-1}_x L_x$. In this short note we examine different possible extensions of this $\Lambda$ and the uniqueness of these extensions. (English)
Keyword: LCC loop
Keyword: multiplication group
Keyword: inner mapping group
Keyword: homomorphism
MSC: 20D10
MSC: 20N05
idZBL: Zbl 1106.20051
idMR: MR2174517
.
Date available: 2009-05-05T16:51:47Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119533
.
Reference: [1] Basarab A.S.: A class of LK-loops (in Russian).Mat. Issled. 120 (1991), 3-7. MR 1121425
Reference: [2] Drápal A.: Conjugacy closed loops and their multiplication groups.J. Algebra 272 (2004), 838-850. Zbl 1047.20049, MR 2028083
Reference: [3] Drápal A.: On multiplication groups of left conjugacy closed loops.Comment. Math. Univ. Carolinae 45 (2004), 223-236. Zbl 1101.20035, MR 2075271
Reference: [4] Goodaire E.G., Robinson D.A.: A class of loops which are isomorphic to all loop isotopes.Canad. J. Math. 34 (1982), 662-672. Zbl 0467.20052, MR 0663308
Reference: [5] Kiechle H., Nagy G.P.: On the extension of involutorial Bol loops.Abh. Math. Sem. Univ. Hamburg 72 (2002), 235-250. Zbl 1016.20051, MR 1941556
Reference: [6] Nagy P., Strambach K.: Loops as invariant sections in groups and their geometry.Canad. J. Math. 46 (1994), 1027-1056. Zbl 0814.20055, MR 1295130
Reference: [7] Soikis L.R.: The special loops (in Russian).in: Voprosy teorii kvazigrupp i lup (V.D. Belousov, ed.), Akademia Nauk Moldav. SSR, Kishinyev, 1970, pp.122-131. MR 0281828
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_46-2005-3_1.pdf 184.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo