Previous |  Up |  Next

Article

Title: A note on the structure of WUR Banach spaces (English)
Author: Argyros, S. A.
Author: Mercourakis, S.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 46
Issue: 3
Year: 2005
Pages: 399-408
.
Category: math
.
Summary: We present an example of a Banach space $E$ admitting an equivalent weakly uniformly rotund norm and such that there is no $\Phi:E\to c_0(\Gamma )$, for any set $\Gamma$, linear, one-to-one and bounded. This answers a problem posed by Fabian, Godefroy, Hájek and Zizler. The space $E$ is actually the dual space $Y^*$ of a space $Y$ which is a subspace of a WCG space. (English)
Keyword: WCG Banach space
Keyword: weakly uniformly rotund norms
Keyword: tree
MSC: 03E05
MSC: 46B20
MSC: 46B26
idZBL: Zbl 1123.46011
idMR: MR2174519
.
Date available: 2009-05-05T16:51:58Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119535
.
Reference: [A-M] Argyros S.A., Manoussakis A.: A sequentially unconditional Banach space with few operators.Proc. of LMS, to appear. Zbl 1091.46004
Reference: [A-Me] Argyros S.A., Mercourakis S.: Examples concerning heredity problems of WCG Banach spaces.Proc. Amer. Math. Soc. 133 (2005), 773-785. Zbl 1064.46015, MR 2113927
Reference: [B-R-W] Benyamini Y., Rudin M.E., Wage M.: Continuous images of weakly compact subsets of Banach spaces.Pacific J. Math. 70 (1977), 309-324. Zbl 0374.46011, MR 0625889
Reference: [D-G-Z] Deville R., Godefroy G., Zizler V.: Smoothness and Renormings in Banach Spaces.Pitman Monographs and Surveys in Pure and Applied Math. 64, Longman Scientific & Technical, Harlow, 1993. Zbl 0782.46019, MR 1211634
Reference: [F] Fabian M.: Gateaux Differentiability of Convex Functions and Topology.John Wiley & Sons, New York, 1997. Zbl 0883.46011, MR 1461271
Reference: [F-H-Z] Fabian M., Hájek P., Zizler V.: On uniform Eberlein compacta and uniformly Gateaux smooth norms.Serdica Math. J. 23 (1997), 351-362. MR 1660997
Reference: [F-Z] Fabian M., Habala P., Hájek P., Montesinos V., Pelant J., Zizler V.: Functional Analysis and Infinite-Dimensional Geometry.CMS Books in Mathematics, Springer, New York, 2001. MR 1831176
Reference: [F-G-H-Z] Fabian M., Godefroy G., Hájek P., Zizler V.: Hilbert generated spaces.J. Funct. Anal. 200 (2003), 301-323. Zbl 1039.46015, MR 1979014
Reference: [F-M-Z] Fabian M., Montesinos V., Zizler V.: Markushevich bases and Eberlein compacts.preprint.
Reference: [J] James R.C.: A separable somewhat reflexive Banach space with non-separable dual.Bull. Amer. Math. Soc. 80 (1974), 738-743. MR 0417763
Reference: [J-L] Johnson W.B., Lindenstrauss J.: Some remarks on weakly compactly generated Banach space.Israel J. Math. 17 (1974), 219-230. MR 0417760
Reference: [L-S] Leiderman A.G., Sokolov G.A.: Adequate families of sets and Corson compacts.Comment. Math. Univ. Carolinae 25 (1984), 233-246. Zbl 0586.54022, MR 0768810
Reference: [M] Mercourakis S.: On weakly countably determined Banach spaces.Trans. Amer. Math. Soc. 300 (1987), 307-327. Zbl 0621.46018, MR 0871678
Reference: [Z] Zizler V.: Nonseparable Banach spaces.Handbook of the Geometry of Banach Spaces, Vol. 2, edited by W.B. Johnson and J. Lindenstrauss, North-Holland, Amsterdam, 2003. Zbl 1041.46009, MR 1999613
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_46-2005-3_3.pdf 235.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo