Previous |  Up |  Next

Article

Title: A semifilter approach to selection principles (English)
Author: Zdomsky, Lubomyr
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 46
Issue: 3
Year: 2005
Pages: 525-539
.
Category: math
.
Summary: In this paper we develop the semifilter approach to the classical Menger and Hurewicz properties and show that the small cardinal $\frak g$ is a lower bound of the additivity number of the $\sigma$-ideal generated by Menger subspaces of the Baire space, and under $\frak u < \frak g$ every subset $X$ of the real line with the property $\operatorname{Split} (\Lambda ,\Lambda )$ is Hurewicz, and thus it is consistent with ZFC that the property $\operatorname{Split} (\Lambda ,\Lambda )$ is preserved by unions of less than $\frak b$ subsets of the real line. (English)
Keyword: Menger property
Keyword: Hurewicz property
Keyword: property $\operatorname{Split}(\Lambda, \Lambda )$
Keyword: semifilter
Keyword: multifunction
Keyword: small cardinals
Keyword: additivity number
MSC: 03Axx
MSC: 03E17
MSC: 03E35
MSC: 54D20
idZBL: Zbl 1121.03060
idMR: MR2174530
.
Date available: 2009-05-05T16:53:03Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119546
.
Related article: http://dml.cz/handle/10338.dmlcz/119614
.
Reference: [1] Blass A.: Combinatorial cardinal characteristics of the continuum.in Handbook of Set Theory (M. Foreman et. al., Eds.), to appear. MR 2768685
Reference: [2] Bukovský L., Halež J.: On Hurewicz properties.Topology Appl. 132 (2003), 71-79. MR 1990080
Reference: [3] Blass A., Mildenberger H.: On the cofinality of ultrapowers.J. Symbolic Logic 74 (1999), 727-736. Zbl 0930.03060, MR 1777781
Reference: [4] Bartoszyński T., Shelah S., Tsaban B.: Additivity properties of topological diagonalizations.J. Symbolic Logic 68 (2003), 1254-1260. Zbl 1071.03031, MR 2017353
Reference: [5] Bartoszyński T., Tsaban B.: Hereditary Topological Diagonalizations and the Menger-Hurewicz Conjectures.Proc. Amer. Math. Soc., to appear; http://arxiv.org/abs/math.LO/0208224. MR 2176030
Reference: [6] Banakh T., Zdomsky L.: Coherence of semifilters.submitted; http://www.franko.lviv.ua/faculty/mechmat/ Departments/Topology/booksite.html.
Reference: [7] Chaber J., Pol R.: A remark on Fremlin-Miller theorem concerning the Menger property and Michael concentrated sets.preprint.
Reference: [8] Gerlits J., Nagy Zs.: Some properties of $C(X)$, I.Topology Appl. 14 2 (1982), 151-163. Zbl 0503.54020, MR 0667661
Reference: [9] Hurewicz W.: Über Folgen stetiger Funktionen.Fund. Math. 9 (1927), 193-204.
Reference: [10] Just W., Miller A.W., Scheepers M., Szeptycki P.J.: The combinatorics of open covers II.Topology Appl. 73 (1996), 241-266. Zbl 0870.03021, MR 1419798
Reference: [11] Rogers C.A., Jayne J.E.: $K$-analytic Sets.in Analytic Sets (C.A. Rogers et al., Eds.), Academic Press, 1980, pp.1-179. Zbl 0589.54047
Reference: [12] Kechris A.: Classical Descriptive Set Theory.Graduate Texts in Math. 156, Springer, 1995. Zbl 0819.04002, MR 1321597
Reference: [13] Laflamme C.: Equivalence of families of functions on natural numbers.Trans. Amer. Math. Soc. 330 (1992), 307-319. MR 1028761
Reference: [14] Laflamme C., Leary C.C.: Filter games on $ømega$ and the dual ideal.Fund. Math. 173 (2002), 159-173. Zbl 0998.03038
Reference: [15] Menger K.: Einige Überdeckungssätze der Punktmengenlehre, Sitzungsberichte.Abt. 2a, Mathematik, Astronomie, Physik, Meteorologie und Mechanik (Wiener Akademie) 133 (1924), 421-444.
Reference: [16] Sakai M.: Weak Fréchet-Urysohn property in function spaces.preprint, 2004.
Reference: [17] Scheepers M.: Combinatorics of open covers I: Ramsey Theory.Topology Appl. 69 (1996), 31-62. Zbl 0848.54018, MR 1378387
Reference: [18] Talagrand M.: Filtres: Mesurabilité, rapidité, propriété de Baire forte.Studia Math. 74 (1982), 283-291. MR 0683750
Reference: [19] Todorcevic S.: Topics in Topology.Lecture Notes in Math. 1652, Springer, Berlin, 1997. Zbl 0953.54001, MR 1442262
Reference: [20] : SPM Bulletin 9 (B. Tsaban, Ed.), http://arxiv.org/abs/math.GN/0406411..
Reference: [21] Tsaban B.: The combinatorics of splittability.Ann. Pure Appl. Logic 129 (2004), 107-130; http://arxiv.org/abs/math.GN/0307225. Zbl 1067.03055, MR 2078361
Reference: [22] Tsaban B.: The Hurewicz covering property and slaloms in the Baire space.Fund. Math. 181 (2004), 273-280; http://arxiv.org/abs/math.GN/0301085. Zbl 1056.54028, MR 2099604
Reference: [23] Tsaban B.: Selection principles in mathematics: A milestone of open problems.Note Math. 22 2 (2003/2004), 179-208; http://arxiv.org/abs/math.GN/0312182. MR 2112739
Reference: [24] Tsaban B.: Some new directions in infinite-combinatorial topology.to appear in Topics in Set Theory and its Applications (J. Bagaria and S. Todorcevic, Eds.), Birkhäuser, 2005; http://arxiv.org/abs/math.GN/0409069. Zbl 1113.54002, MR 2267150
Reference: [25] Vaughan J.: Small uncountable cardinals and topology.in Open Problems in Topology (J. van Mill, G.M. Reed, Eds.), Elsevier Sci. Publ., Amsterdam, 1990, pp.197-216. MR 1078636
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_46-2005-3_14.pdf 289.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo