Previous |  Up |  Next

Article

Title: Fréchet property in compact spaces is not preserved by $M$-equivalence (English)
Author: Okunev, Oleg
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 46
Issue: 4
Year: 2005
Pages: 747-749
.
Category: math
.
Summary: An example of two $M$-equivalent (hence $l$-equivalent) compact spaces is presented, one of which is Fréchet and the other is not. (English)
Keyword: $l$-equivalence
Keyword: $M$-equivalence
Keyword: Fréchet property
MSC: 54C35
MSC: 54D30
MSC: 54D99
MSC: 54H11
idZBL: Zbl 1121.54033
idMR: MR2259504
.
Date available: 2009-05-05T16:54:48Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119564
.
Reference: [Arh1] Arhangel'skii A.V.: On linear homeomorphisms of function spaces.Soviet Math. Doklady 25 (1982), 852-855.
Reference: [Arh2] Arhangel'skii A.V.: Problems in $C_p$-theory.J. van Mill and G.M. Reed (1990), 601-615 Open Problems in Topology North-Holland Amsterdam.
Reference: [Arh3] Arhangel'skii A.V.: Topological Function Spaces.Kluwer Acad. Publ. Dordrecht (1992). MR 1485266
Reference: [Eng] Engelking R.: General Topology.(1976), PWN Warszawa. Zbl 0373.54001, MR 0500780
Reference: [Mar] Markov A.A.: On free topological groups.Izv. Akad. Nauk SSSR Ser. Mat (1) (1945), Russian English transl.: Amer. Math. Soc. Transl. (1) 8 (1962).
Reference: [Oku1] Okunev O.: A method for constructing examples of M-equivalent spaces.Topology Appl. 36 (1990), 157-171 Correction Topology Appl. 49 (1993), 191-192. Zbl 0779.54008, MR 1068167
Reference: [Oku2] Okunev O.: Tightness of compact spaces is preserved by the $t$-equivalence relation.Comment. Mat. Univ. Carolinae 43 2 335-342 (2002). Zbl 1090.54004, MR 1922131
Reference: [Sim] Simon P.: A compact Fréchet space whose square is not Fréchet.Comment. Math. Univ. Carolinae 21 (1980), 749-753. Zbl 0466.54022, MR 0597764
Reference: [Tka] Tkachuk V.V.: Duality with respect to the functor $C_p$ and cardinal invariants of the type of the Souslin number.Math. Notes (1985), 37 3-4 247-252. MR 0790433
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_46-2005-4_13.pdf 167.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo