Previous |  Up |  Next

Article

Title: Two weight norm inequalities for fractional one-sided maximal and integral operators (English)
Author: De Rosa, Liliana
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 47
Issue: 1
Year: 2006
Pages: 35-46
.
Category: math
.
Summary: In this paper, we give a generalization of Fefferman-Stein inequality for the fractional one-sided maximal operator: $$ \int_{-\infty}^{+\infty} M_{\alpha}^+(f)(x)^p w(x)\,dx \leq A_p \int_{-\infty}^{+\infty} |f(x)|^p M_{\alpha p}^-(w)(x)\,dx, $$ where $0 < \alpha < 1$ and $1 < p < 1/\alpha $. We also obtain a substitute of dual theorem and weighted norm inequalities for the one-sided fractional integral $I_{\alpha}^+$. (English)
Keyword: one-sided fractional operators
Keyword: weighted inequalities
MSC: 26A33
MSC: 26D10
MSC: 42B25
idZBL: Zbl 1150.26310
idMR: MR2223965
.
Date available: 2009-05-05T16:55:24Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119572
.
Reference: [1] Bennett C., Sharpley R.: Interpolation of Operators.Academic Press, New York, 1988. Zbl 0647.46057, MR 0928802
Reference: [2] Cruz-Uribe D.: New proofs of two-weight norm inequalities for the maximal operator.Georgian Math. J. 7 1 (2000), 33-42. Zbl 0987.42019, MR 1768043
Reference: [3] Fefferman C., Stein E.M.: Some maximal inequalities.Amer. J. Math. 93 (1971), 107-115. Zbl 0222.26019, MR 0284802
Reference: [4] García-Cuerva J., Rubio de Francia J.L.: Weighted Norm Inequalities and Related Topics.North-Holland, Amsterdam, 1985. MR 0848147
Reference: [5] Martín-Reyes F.J.: New proofs of weighted inequalities for the one-sided Hardy-Littlewood maximal functions.Proc. Amer. Math. Soc. 117 3 (1993), 691-698. MR 1111435
Reference: [6] Martín-Reyes F.J., Pick L., de la Torre A.: $A_{\infty}^+$ condition.Canad. J. Math. 45 6 (1993), 1231-1244. MR 1247544
Reference: [7] Martín-Reyes F.J., de la Torre A.: Two weight norm inequalities for fractional one-sided maximal operators,.Proc. Amer. Math. Soc. 117 2 (1993), 483-489. MR 1110548
Reference: [8] Pérez C.: Banach function spaces and the two-weight problem for maximal functions.Proceedings of the Conference on Function Spaces, Differential Operators and Nonlinear Analysis, Paseky nad Jizerou, (1995), pp.141-158. MR 1480935
Reference: [9] Riveros M.S., de Rosa L., de la Torre A.: Sufficient conditions for one-sided operators.J. Fourier Anal. Appl. 6 6 (2000), 607-621. Zbl 0984.42010, MR 1790246
Reference: [10] Sawyer E.: Weighted inequalities for the one-sided Hardy-Littlewood maximal functions.Trans. Amer. Math. Soc. 297 1 (1986), 53-61. Zbl 0627.42009, MR 0849466
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_47-2006-1_4.pdf 279.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo