Previous |  Up |  Next

Article

Title: On sequent calculi for intuitionistic propositional logic (English)
Author: Švejdar, Vítězslav
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 47
Issue: 1
Year: 2006
Pages: 159-173
.
Category: math
.
Summary: The well-known Dyckoff's 1992 calculus/procedure for intuitionistic propositional logic is considered and analyzed. It is shown that the calculus is Kripke complete and the procedure in fact works in polynomial space. Then a multi-conclusion intuitionistic calculus is introduced, obtained by adding one new rule to known calculi. A simple proof of Kripke completeness and polynomial-space decidability of this calculus is given. An upper bound on the depth of a Kripke counter-model is obtained. (English)
Keyword: intuitionistic logic
Keyword: polynomial-space
Keyword: sequent calculus
Keyword: Kripke semantics
MSC: 03B20
MSC: 03B35
MSC: 03F05
MSC: 03F20
idZBL: Zbl 1138.03008
idMR: MR2223976
.
Date available: 2009-05-05T16:56:29Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119583
.
Reference: [1] Buss S., Pudlák P.: On the computational content of intuitionistic propositional proofs.Ann. Pure Appl. Logic 109 49-64 (2001). Zbl 1009.03027, MR 1835237
Reference: [2] van Dalen D.: Intuitionistic logic.in: Handbook of Philosophical Logic, D. Gabbay and F. Guenthner, Eds., no. 164-167 in Synthese Library, Chapter III.4, pp.225-340, Kluwer, Dordrecht, 1986. Zbl 1002.03053
Reference: [3] Dershowitz N., Manna Z.: Proving termination with multiset orderings.Comm. ACM 22 465-476 (1979). Zbl 0431.68016, MR 0540043
Reference: [4] Dyckhoff R.: Contraction-free sequent calculi for intuitionistic logic.J. Symbolic Logic 57 795-807 (1992). Zbl 0761.03004, MR 1187448
Reference: [5] Hudelmaier J.: An $O(n\log n)$-space decision procedure for intuitionistic propositional logic.J. Logic Comput. 3 1 63-75 (1993). Zbl 0788.03010, MR 1240404
Reference: [6] Kleene S.C.: Introduction to Metamathematics.D. van Nostrand, New York, 1952. Zbl 0875.03002, MR 0051790
Reference: [7] Ladner R.: The computational complexity of provability in systems of modal logic.SIAM J. Comput. 6 3 467-480 (1977). MR 0450027
Reference: [8] Papadimitriou C.H.: Computational Complexity.Addison-Wesley, Reading, MA, 1994. Zbl 0833.68049, MR 1251285
Reference: [9] Statman R.: Intuitionistic propositional logic is polynomial-space complete.Theoretical Comput. Sci. 9 67-72 (1979). Zbl 0411.03049, MR 0535124
Reference: [10] Švejdar V.: On the polynomial-space completeness of intuitionistic propositional logic.Arch. Math. Logic 42 7 (2003), 711-716; {http://dx.doi.org/10.1007/s00153-003-0179-x}. Zbl 1025.03030, MR 2015096
Reference: [11] Takeuti G.: Proof Theory.North-Holland, Amsterdam, 1975. Zbl 0681.03039, MR 0882549
Reference: [12] Troelstra A.S., Schwichtenberg H.: Basic Proof Theory.Cambridge University Press, Cambridge, 1996. Zbl 0957.03053, MR 1409368
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_47-2006-1_15.pdf 326.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo