Previous |  Up |  Next

Article

Title: A characterization of polynomially Riesz strongly continuous semigroups (English)
Author: Latrach, Khalid
Author: Paoli, J. Martin
Author: Taoudi, M. A.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 47
Issue: 2
Year: 2006
Pages: 275-289
.
Category: math
.
Summary: In this paper we characterize the class of polynomially Riesz strongly continuous semigroups on a Banach space $X$. Our main results assert, in particular, that the generators of such semigroups are either polynomially Riesz (then bounded) or there exist two closed infinite dimensional invariant subspaces $X_0$ and $X_1$ of $X$ with $X=X_0\oplus X_1$ such that the part of the generator in $X_0$ is unbounded with resolvent of Riesz type while its part in $X_1$ is a polynomially Riesz operator. (English)
Keyword: strongly continuous semigroups
Keyword: Riesz operators
Keyword: polynomially Riesz operators
MSC: 47B06
MSC: 47D03
MSC: 47D06
idZBL: Zbl 1150.47325
idMR: MR2241532
.
Date available: 2009-05-05T16:57:21Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119592
.
Reference: [1] Caradus S.R.: Operators of Riesz type.Pacific J. Math. 18 (1966), 61-71. Zbl 0144.38601, MR 0199704
Reference: [2] Caradus S.R., Pfaffenberger W.E., Yood B.: Calkin Algebras and Algebras of Operators on Banach Spaces.Marcel Dekker, New York, 1974. Zbl 0299.46062, MR 0415345
Reference: [3] Cuthbert J.R.: On semigroups such that $U(t)-I$ is compact for some $t>0$.Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 18 (1971), 9-16. MR 0279625
Reference: [4] Engel K.J., Nagel R.: One-Parameter Semigroups for Linear Evolution Equations.Springer, New York, 2000. Zbl 0952.47036, MR 1721989
Reference: [5] Gohberg I.C., Markus A., Feldman I.A.: Normally solvable operators and ideals associated with them.Amer. Math. Soc. Trans. Ser. 2 61 (1967), 63-84.
Reference: [6] Gramsch B., Lay D.: Spectral mapping theorems for essential spectra.Math. Ann. 192 (1971), 17-32. Zbl 0203.45601, MR 0291846
Reference: [7] Henriquez H.: Cosine operator families such that $C(t)-I$ is compact for all $t>0$.Indian J. Pure Appl. Math. 16 (1985), 143-152. Zbl 0572.47031, MR 0780302
Reference: [8] Istratescu V.I.: Some remarks on a class of semigroups of operators.Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 26 (1973), 241-243. MR 0333824
Reference: [9] Kato T.: Perturbation theory for nullity, deficiency and other quantities of linear operators.J. Anal. Math. 6 (1958), 261-322. Zbl 0090.09003, MR 0107819
Reference: [10] Latrach K., Dehici A.: Remarks on embeddable semigroups in groups and a generalization of some Cuthbert's results.Int. J. Math. Math. Sci. (2003), 22 1421-1431. Zbl 1069.47051, MR 1980178
Reference: [11] Latrach K., Paoli J.M.: Polynomially compact-like strongly continuous semigroups.Acta Appl. Math. 82 (2004), 87-99. Zbl 1066.47039, MR 2061478
Reference: [12] Lizama C.: Uniform continuity and compactness for resolvent families of operators.Acta Appl. Math. 38 (1995), 131-138. Zbl 0842.45009, MR 1326629
Reference: [13] Lutz D.: Compactness properties of operator cosine functions.C.R. Math. Rep. Acad. Sci. Canada 2 (1980), 277-280. Zbl 0448.47021, MR 0600561
Reference: [14] Phillips R.S.: Spectral theory for semigroups of linear operators.Trans. Amer. Math. Soc. 71 (1951), 393-415. MR 0044737
Reference: [15] Schechter M.: On the essential spectrum of an arbitrary operator I.J. Math. Anal. Appl. 13 (1966), 205-215. Zbl 0147.12101, MR 0188798
Reference: [16] Schechter M.: Principles of Functional Analysis.Graduate Studies in Mathematics, Vol. 36, American Mathematical Society, Providence, 2001. Zbl 1002.46002, MR 1861991
Reference: [17] West T.T.: Riesz operators in Banach spaces.Proc. London Math. Soc. 16 (1966), 131-140. Zbl 0139.08401, MR 0193522
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_47-2006-2_7.pdf 273.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo