Previous |  Up |  Next

Article

Title: Topologies generated by ideals (English)
Author: Uzcátegui, Carlos
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 47
Issue: 2
Year: 2006
Pages: 317-335
.
Category: math
.
Summary: A topological space $X$ is said to be {\it generated by an ideal $\Cal I$\/} if for all $A\subseteq X$ and all $x\in \overline{A}$ there is $E\subseteq A$ in $\Cal I$ such that $x\in \overline{E}$, and is said to be {\it weakly generated by\/} $\Cal I$ if whenever a subset $A$ of $X$ contains $\overline{E}$ for every $E\subseteq A$ with $E\in \Cal I$, then $A$ itself is closed. An important class of examples are the so called weakly discretely generated spaces (which include sequential, scattered and compact Hausdorff spaces). Another paradigmatic example is the class of Alexandroff spaces which corresponds to spaces generated by finite sets. By considering an appropriate topology on the power set of $X$ we show that $\tau $ is weakly generated by $\Cal I$ iff $\tau $ is a $\Cal I$-closed subset of $\Cal P(X)$. The class of spaces weakly generated by an ideal behaves as the class of sequential spaces, in the sense that their closure operator can be characterized as the sequential closure and moreover there is a natural notion of a convergence associated to them. We also show that the collection of topologies weakly generated by $\Cal I$ is lattice isomorphic to a lattice of pre-orders over $\Cal I$. (English)
Keyword: lattices of topologies
Keyword: hyperspaces
Keyword: tightness
Keyword: Alexandroff spaces
Keyword: Fréchet and sequential spaces
Keyword: discretely generated spaces
Keyword: sequential convergence
MSC: 06B30
MSC: 54A10
MSC: 54A20
MSC: 54B20
MSC: 54D55
idZBL: Zbl 1150.54302
idMR: MR2241535
.
Date available: 2009-05-05T16:57:37Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119595
.
Reference: [1] Alas O.T., Tkachuk V.V., Wilson R.G.: Closures of discrete sets often reflect global properties.Topology Proc. 25 27-44 (2000). Zbl 1002.54021, MR 1875581
Reference: [2] Bella A., Simon P.: Spaces which are generated by discrete sets.Topology Appl. 135 1-3 87-99 (2004). Zbl 1050.54001, MR 2024948
Reference: [3] Bella A., Yaschenko I.V.: On AP and WAP spaces.Comment. Math. Univ. Carolinae 40.3 521-536 (1999). Zbl 1010.54040, MR 1732483
Reference: [4] Daniels P.: Pixley-Roy spaces over subsets of the reals.Topology Appl. 29 93-106 (1988). Zbl 0656.54007, MR 0944073
Reference: [5] van Douwen E.K.: The Pixley-Roy topology on spaces of subsets.in: Set Theoretic Topology, G.M. Reed, editor, pp. 111-134, Academic Press, New York, 1977. Zbl 0372.54006, MR 0440489
Reference: [6] van Douwen E.K.: Applications of maximal topologies.Topology Appl. 51.2 125-139 (1993). Zbl 0845.54028, MR 1229708
Reference: [7] Dow A., Tkachenko M.G., Tkachuk V.V., Wilson R.G.: Topologies generated by discrete subspaces.Glas. Math. Ser. III 37(57) 187-210 (2002). Zbl 1009.54005, MR 1918105
Reference: [8] Ellentuck E.: A new proof that analytic sets are Ramsey.J. Symbolic Logic 39 163-165 (1974). Zbl 0292.02054, MR 0349393
Reference: [9] Engelking R.: General Topology.PWN, Warszawa, 1977. Zbl 0684.54001, MR 0500780
Reference: [10] Frič R.: History of sequential convergence spaces.in: Handbook of the History of General Topology, C.E. Aull and R. Lowen, editors, volume 1, pp.343-355; Kluwer Academic Publishers, Amsterdam, 1997. MR 1617537
Reference: [11] Johnstone P.: Stone Spaces.Cambridge Studies in Advanced Mathematics 3, Cambridge University Press, 1986. Zbl 0586.54001, MR 0861951
Reference: [12] Kašuba R.: The generalized Ochan topology on sets of subsets and topological Boolean rings.Math. Nachr. 97 47-56 (1980). MR 0600823
Reference: [13] Nyikos P.: Convergence in topology.in: Recent Progress in General Topology, M. Hušek and J. van Mill, editors, pp.537-570; Elsevier, 1992. Zbl 0794.54004, MR 1229138
Reference: [14] Popov V.V.: Structure of the exponential of a discrete space.Mathematical Notes 35.5 (1984), 399-404; translated from the Mat. Zametki. MR 0750817
Reference: [15] Steiner A.K.: The lattice of topologies: structure and complementation.Trans. Amer. Math. Soc. 122.2 379-398 (1966). Zbl 0139.15905, MR 0190893
Reference: [16] Tkachuk V.V., Yaschenko I.V.: Almost closed sets and topologies they determine.Comment. Math. Univ. Carolinae 42.2 393-403 (2001). Zbl 1053.54004, MR 1832158
Reference: [17] Todorčević S., Uzcátegui C.: Analytic topologies over countable sets.Topology Appl. 111.3 299-326 (2001). Zbl 0970.03042, MR 1814231
Reference: [18] Todorčević S., Uzcátegui C.: Analytic $k$-spaces.Topology Appl. 146-147 511-526 (2005). Zbl 1063.54015, MR 2107168
Reference: [19] Uzcátegui C., Vielma J.: Alexandroff topologies viewed as closed sets in the Cantor cube.Divulg. Mat. 13.1 45-53 (2005). Zbl 1098.54001, MR 2180768
Reference: [20] Watson S.: The construction of topological spaces: Order.unpublished, 2001; http://math.yorku.ca/ watson/.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_47-2006-2_10.pdf 294.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo