Previous |  Up |  Next

Article

Title: On the boundary of 2-dimensional ideal polyhedra (English)
Author: Vrontakis, Emmanuel
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 47
Issue: 2
Year: 2006
Pages: 359-367
.
Category: math
.
Summary: It is proved that for every two points in the visual boundary of the universal covering of a $2$-dimensional ideal polyhedron, there is an infinity of paths joining them. (English)
Keyword: CAT$(-1)$ spaces
Keyword: ideal polyhedron
Keyword: visual boundary
MSC: 53C23
MSC: 57M20
idZBL: Zbl 1150.57301
idMR: MR2241537
.
Date available: 2009-05-05T16:57:51Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119597
.
Reference: [1] Benakli N.: Polyédres hyperboliques, passage du local au global.Thése, Université de Paris-Sud, 1992.
Reference: [2] Bourdon M.: Structure conforme au bord et flot géodésique d'un CAT$(-1)$-espace.Enseign. Math. 41 (1995), 63-102. MR 1341941
Reference: [3] Coornaert M.: Sur les groupes proprement discontinus d'isometries des espaces hyperboliques au sens de Gromov.Thèse, U.L.P., 1990. Zbl 0777.53044
Reference: [4] Charitos C., Papadopoulos A.: The geometry of ideal $2$-dimensional simplicial complexes.Glasgow Math. J. 43 39-66 (2001). Zbl 0977.57003, MR 1825722
Reference: [5] Charitos C., Papadopoulos A.: Hyperbolic structures and measured foliations on $2$-dimensional complexes.Monatsh. Math. 139 1-17 (2003). Zbl 1029.57003, MR 1981114
Reference: [6] Charitos C., Papadopoulos A.: On the isometries of ideal polyhedra.Rend. Circ. Mat. Palermo (2) 54 1 (2005), 71-80. Zbl 1194.57006, MR 2150807
Reference: [7] Charitos C., Tsapogas G.: Geodesic flow on ideal polyhedra.Canad. J. Math. 49 4 696-707 (1997). Zbl 0904.52004, MR 1471051
Reference: [8] Charitos C., Tsapogas G.: Complexity of geodesics on $2$-dimensional ideal polyhedra and isotopies.Math. Proc. Camb. Phil. Soc. 121 343-358 (1997). Zbl 0890.57047, MR 1426528
Reference: [9] Ghys E., de la Harpe P.: Sur les groupes hyperboliques d'après Mikhael Gromov.Progress in Mathematics, vol. 83, Birkhäuser, Boston, 1990, pp.1-25. Zbl 0731.20025, MR 1086648
Reference: [10] Gromov M.: Structures Métriques pour les Variétés Riemanniennes.J. Lafontaine and P. Pansu, Eds., Fernand Nathan, Paris, 1981. Zbl 0509.53034, MR 0682063
Reference: [11] Gromov M.: Hyperbolic Groups.in Essays in Group Theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp.75-263. Zbl 1022.20501, MR 0919829
Reference: [12] Haglund F.: Les polyédres de Gromov.Thése, Université de Lyon I, 1992. Zbl 0749.52011, MR 1133493
Reference: [13] Kapovich I., Benakli N.: Boundaries of hyperbolic groups.Combinatorial and Geometric Group Theory (New York, 2000/Hoboken, NJ, 2001), Contemp. Math. 296, Amer. Math. Soc., Providence, RI, 2002, pp.39-93. Zbl 1044.20028, MR 1921706
Reference: [14] Paulin F.: Constructions of hyperbolic groups via hyperbolizations of polyhedra.in: Group Theory from a Geometrical Viewpoint, ICTP, Trieste, Italy, 1990, E. Ghys and A. Haefliger, Eds., World Sci. Publishing, River Edge, NJ, 1991, pp.313-372. Zbl 0843.20032, MR 1170371
Reference: [15] Thurston W.P.: Three-dimensional Geometry and Topology.Princeton University Press, Princeton, NJ, 1997. Zbl 0873.57001, MR 1435975
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_47-2006-2_12.pdf 213.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo