Previous |  Up |  Next

Article

Title: Variance of periodic measure of bounded set with random position (English)
Author: Janáček, Jiří
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 47
Issue: 3
Year: 2006
Pages: 443-455
.
Category: math
.
Summary: The principal term in the asymptotic expansion of the variance of the periodic measure of a ball in $\Bbb R^d$ under uniform random shift is proportional to the $(d+1)$st power of the grid scaling factor. This result remains valid for a bounded set in $\Bbb R^d$ with sufficiently smooth isotropic covariogram under a uniform random shift and an isotropic rotation, and the asymptotic term is proportional also to the $(d-1)$-dimensional measure of the object boundary. The related coefficients are calculated for various periodic grids constructed from affine sets. (English)
Keyword: periodic measure
Keyword: variance
MSC: 60E99
MSC: 62D05
MSC: 62E20
MSC: 62J10
idZBL: Zbl 1150.62315
idMR: MR2281006
.
Date available: 2009-05-05T16:58:33Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119605
.
Reference: [1] Bochner S., Chandrasekharan K.: Fourier Transform.Princeton University Press, Princeton, 1949. MR 0031582
Reference: [2] Borwein J.M., Choi K.-K.S.: On Dirichlet series for sums of squares.Ramanujan J. (2003), 7 95-127. Zbl 1038.11056, MR 2035795
Reference: [3] Crandall R.E.: Fast evaluation of Epstein zeta function.http://www.perfsci.com/free/techpapers/epstein.pdf, 1998.
Reference: [4] Janáček J.: Errors of spatial grids estimators of volume and surface area.Acta Stereol. (1999), 18 389-396.
Reference: [5] Kendall D.G.: On the number of lattice points inside a random oval.Quart. J. Math. (1948), 19 1-26. Zbl 0031.11201, MR 0024929
Reference: [6] Kendall D.G., Rankin R.A.: On the number of points of a given lattice in a random hypersphere.Quart. J. Math., Ser. (2) (1953), 4 178-189. Zbl 0052.14503, MR 0057484
Reference: [7] Matérn B.: Precision of area estimation: a numerical study.J. Microsc. (1989), 153 269-283.
Reference: [8] Matheron G.: Les variables regionalisées et leur estimation.Masson et CIE, Paris, 1965.
Reference: [9] Rao R.C.: Linear Statistical Inference and its Applications.2nd edition, John Wiley & Sons, New York, 1973. Zbl 0256.62002, MR 0346957
Reference: [10] Rataj J.: On set covariance and three-point test sets.Czechoslovak Math. J. (2004), 54 205-214. Zbl 1049.52004, MR 2040232
Reference: [11] Rijkstyn'sh E. Ja.: Asimptoticheskye razlozhenia integralov.Vol 1, Zinatne, Riga, 1974.
Reference: [12] Conway J.H., Sloane N.J.A.: Sphere Packings, Lattices and Groups.Springer, New York, 1998. Zbl 0915.52003
Reference: [13] Watson G.N.: A Treatise on the Theory of Bessel Functions.2nd edition, Cambridge University Press, Cambridge, 1922. Zbl 0849.33001, MR 0010746
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_47-2006-3_7.pdf 245.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo