Previous |  Up |  Next

Article

Title: An infinitary version of Sperner's Lemma (English)
Author: Hohti, Aarno
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 47
Issue: 3
Year: 2006
Pages: 503-514
.
Category: math
.
Summary: We prove an extension of the well-known combinatorial-topological lemma of E. Sperner to the case of infinite-dimensional cubes. It is obtained as a corollary to an infinitary extension of the Lebesgue Covering Dimension Theorem. (English)
Keyword: simplex
Keyword: colouring
Keyword: covering dimension
Keyword: point-finite
Keyword: fixed point
Keyword: algebraic topology
MSC: 54F45
MSC: 55M20
MSC: 57N20
idZBL: Zbl 1150.57311
idMR: MR2281012
.
Date available: 2009-05-05T16:59:07Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119611
.
Reference: [1] Benyamini Y., Sternfeld Y.: Spheres in infinite-dimensional normed spaces are Lipschitz contractible.Proc. Amer. Math. Soc. 88:3 (1983), 439-445. Zbl 0518.46010, MR 0699410
Reference: [2] Brown A.B., Cairns S.: Strengthening of Sperner's lemma applied to homology theory.Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 113-114. Zbl 0097.38702, MR 0146831
Reference: [3] Cohen D.I.A.: On the Sperner lemma.J. Combinatorial Theory 2 (1967), 585-587. Zbl 0163.18104, MR 0214047
Reference: [4] Engelking R.: Dimension Theory.Polish Scientific Publishers, Warszawa, 1978. Zbl 0401.54029, MR 0482697
Reference: [5] Erdös P., Galvin F., Hajnal A.: On set-systems having large chromatic number and not containing prescribed subsystems.in: Infinite and Finite Sets (A. Hajnal, R. Rado, V.T. Sós, Eds.), North-Holland, Amsterdam, 1975, pp.425-513. MR 0398876
Reference: [6] Fan Ky: A generalization of Tucker's combinatorial lemma with topological applications.Ann. of Math. (2) 56 (1952), 431-437. Zbl 0047.42004, MR 0051506
Reference: [7] Fried J.: Personal communication..
Reference: [8] Goebel K.: On the minimal displacement of points under Lipschitzian mappings.Pacific J. Math. 45 (1973), 151-163. Zbl 0265.47046, MR 0328708
Reference: [9] Isbell J.R.: Uniform Spaces.Mathematical Surveys 12, Amer. Math. Soc., Providence, Rhode Island, 1964. Zbl 0124.15601, MR 0170323
Reference: [10] Knaster B., Kuratowski C., Mazurkiewicz S.: Ein Beweis des Fixpunksatzes für $n$-dimensionale Simplexe.Fund. Math. 14 (1929), 132-137.
Reference: [11] Kryński S.: Remarks on matroids and Sperner's lemma.European J. Combin. 11 (1990), 485-488. Zbl 0727.05015, MR 1075536
Reference: [12] Kuhn H.W.: Some combinatorial lemmas in topology.IBM J. Res. Develop. 4 (1960), 508-524. Zbl 0109.15603, MR 0124038
Reference: [13] Lindström S.: On matroids and Sperner's lemma.European J. Combin. 2 (1981), 65-66. Zbl 0473.05022, MR 0611933
Reference: [14] Lóvasz L.: Matroids and Sperner's lemma.European J. Combin. 1 (1980), 65-66. Zbl 0443.05025, MR 0576768
Reference: [15] Mani P.: Zwei kombinatorisch-geometrische Sätze vom Typus Sperner-Tucker-Ky Fan.Monatsh. Math. 71 (1967), 427-435. Zbl 0173.26202, MR 0227859
Reference: [16] Pelant J.: Combinatorial properties of uniformities.General Topology and its Relations to Modern Analysis and Algebra IV, Lecture Notes in Mathematics 609, Springer, Berlin-Heidelberg-New York, 1977, pp.154-165. Zbl 0371.54054, MR 0500846
Reference: [17] Pelant J.: Embeddings into $c_0$.Topology Appl. 57 (1994), 2-3 259-269. MR 1278027
Reference: [18] Pelant J., Rödl V.: On coverings of infinite-dimensional metric spaces. Topological, algebraical and combinatorial structures. Frolík's memorial volume.Discrete Math. 108 (1992), 1-3 75-81. MR 1189831
Reference: [19] Rödl V.: Small spaces with large point-character.European J. Combin. 8 (1987), 55-58. MR 0884064
Reference: [20] Smith J.C.: Characterizations of metric-dependent dimension functions.Proc. Amer. Math. Soc. 19:6 (1968), 1264-1269. Zbl 0169.25103, MR 0232365
Reference: [21] Sperner E.: Neuer Beweis für die Invarianz der Dimensionzahl und des Gebietes.Abh. Math. Sem. Hamburg 6 (1928), 265-272.
Reference: [22] Sperner E.: Kombinatorik bewerter Komplexe.Abh. Math. Sem. Univ. Hamburg 39 (1973), 21-43. MR 0332498
Reference: [23] Stone A.H.: Universal spaces for some metrizable uniformities.Quart. J. Math. Oxford, Ser. (2) 11 (1960), 105-115. Zbl 0096.37402, MR 0116308
Reference: [24] Ščepin E.V.: On a problem of Isbell.Soviet Math. Dokl. 16 (1975), 685-687. MR 0380743
Reference: [25] Tucker A.W.: Some topological properties of disk and sphere.in: Proc. First Canadian Math. Congress, Montreal, Canada, 1945, pp.285-309. Zbl 0061.40305, MR 0020254
Reference: [26] Vidossich G.: Uniform spaces of countable type.Proc. Amer. Math. Soc. 25:3 (1970), 551-553. Zbl 0181.50903, MR 0261546
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_47-2006-3_13.pdf 256.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo