Previous |  Up |  Next


$C_p(X, Y)$; subspace of ordinals; countable extent; Lindel" of space
We show that if $X$ is first-countable, of countable extent, and a subspace of some ordinal, then $C_p(X,2)$ is Lindelöf.
[AR1] Arhangelskii A.: Topological Function Spaces. Math. Appl., vol. 78, Kluwer Academic Publisher, Dordrecht, 1992. MR 1144519
[AR2] Arhangelskii A.: Some Metrization Theorems (Russian). Uspehi Mat. Nauk 18 5 (113) 139-145 (1963). MR 0156318
[ASA] Asanov M.O.: On cardinal invariants of function spaces. Modern Topology and Set Theory, Igevsk, (2), 1979, pp.8-12.
[BUZ] Buzyakova R.Z.: In search for Lindelöf $C_p$'s. Comment. Math. Univ. Carolin. 45 (2004), 1 145-151. MR 2076866 | Zbl 1098.54010
[ENG] Engelking R.: General Topology. Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, revised ed., 1989. MR 1039321 | Zbl 0684.54001
[NAH] Nahmanson L.B.: Lindelöfness in function spaces. Fifth Teraspol Simposium on Topology and its Applications, Kishinev, 1985, 183.
Partner of
EuDML logo