Title:
|
Representation of bilinear forms in non-Archimedean Hilbert space by linear operators (English) |
Author:
|
Diagana, Toka |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
47 |
Issue:
|
4 |
Year:
|
2006 |
Pages:
|
695-705 |
. |
Category:
|
math |
. |
Summary:
|
The paper considers representing symmetric, non-degenerate, bilinear forms on some non-Archimedean Hilbert spaces by linear operators. Namely, upon making some assumptions it will be shown that if $\phi $ is a symmetric, non-degenerate bilinear form on a non-Archimedean Hilbert space, then $\phi $ is representable by a unique self-adjoint (possibly unbounded) operator $A$. (English) |
Keyword:
|
non-Archimedean Hilbert space |
Keyword:
|
non-Archimedean bilinear form |
Keyword:
|
unbounded operator |
Keyword:
|
unbounded bilinear form |
Keyword:
|
bounded bilinear form |
Keyword:
|
self-adjoint operator |
MSC:
|
46C99 |
MSC:
|
46S10 |
MSC:
|
47S10 |
idZBL:
|
Zbl 1150.47408 |
idMR:
|
MR2337423 |
. |
Date available:
|
2009-05-05T17:00:39Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119629 |
. |
Related article:
|
http://dml.cz/handle/10338.dmlcz/119670 |
. |
Reference:
|
[1] Cassels J.W.S.: Local Fields.London Mathematical Society, Student Texts 3, Cambridge Univ. Press, London, 1986. Zbl 0595.12006, MR 0861410 |
Reference:
|
[2] Basu S., Diagana T., Ramaroson F.: A $p$-adic version of Hilbert-Schmidt operators and applications.J. Anal. Appl. 2 (2004), 3 173-188. Zbl 1077.47061, MR 2092641 |
Reference:
|
[3] de Bivar-Weinholtz A., Lapidus M.L.: Product formula for resolvents of normal operator and the modified Feynman integral.Proc. Amer. Math. Soc. 110 (1990), 2 449-460. MR 1013964 |
Reference:
|
[4] Diagana T.: Towards a theory of some unbounded linear operators on $p$-adic Hilbert spaces and applications.Ann. Math. Blaise Pascal 12 (2005), 1 205-222. Zbl 1087.47061, MR 2126449 |
Reference:
|
[5] Diagana T.: Erratum to: ``Towards a theory of some unbounded linear operators on $p$-adic Hilbert spaces and applications".Ann. Math. Blaise Pascal 13 (2006), 105-106. MR 2233015 |
Reference:
|
[6] Diagana T.: Bilinear forms on non-Archimedean Hilbert spaces.preprint, 2005. |
Reference:
|
[7] Diagana T.: Fractional powers of the algebraic sum of normal operators.Proc. Amer. Math. Soc. 134 (2006), 6 1777-1782. Zbl 1092.47027, MR 2207493 |
Reference:
|
[8] Diarra B.: An operator on some Ultrametric Hilbert spaces.J. Anal. 6 (1998), 55-74. Zbl 0930.47049, MR 1671148 |
Reference:
|
[9] Diarra B.: Geometry of the $p$-adic Hilbert spaces.preprint, 1999. |
Reference:
|
[10] Johnson G.W., Lapidus M.L.: The Feynman Integral and Feynman Operational Calculus.Oxford Univ. Press, Oxford, 2000. MR 1771173 |
Reference:
|
[11] Kato T.: Perturbation Theory for Linear Operators.Springer, New York, 1966. Zbl 0836.47009, MR 0203473 |
Reference:
|
[12] Ochsenius H., Schikhof W.H.: Banach spaces over fields with an infinite rank valuation.$p$-adic Functional Analysis (Poznan, 1998), Marcel Dekker, New York, 1999, pp.233-293. Zbl 0938.46056, MR 1703500 |
Reference:
|
[13] van Rooij A.C.M.: Non-Archimedean Functional Analysis.Marcel Dekker, New York, 1978. Zbl 0396.46061, MR 0512894 |
. |