Previous |  Up |  Next

Article

Title: Representation of bilinear forms in non-Archimedean Hilbert space by linear operators (English)
Author: Diagana, Toka
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 47
Issue: 4
Year: 2006
Pages: 695-705
.
Category: math
.
Summary: The paper considers representing symmetric, non-degenerate, bilinear forms on some non-Archimedean Hilbert spaces by linear operators. Namely, upon making some assumptions it will be shown that if $\phi $ is a symmetric, non-degenerate bilinear form on a non-Archimedean Hilbert space, then $\phi $ is representable by a unique self-adjoint (possibly unbounded) operator $A$. (English)
Keyword: non-Archimedean Hilbert space
Keyword: non-Archimedean bilinear form
Keyword: unbounded operator
Keyword: unbounded bilinear form
Keyword: bounded bilinear form
Keyword: self-adjoint operator
MSC: 46C99
MSC: 46S10
MSC: 47S10
idZBL: Zbl 1150.47408
idMR: MR2337423
.
Date available: 2009-05-05T17:00:39Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119629
.
Related article: http://dml.cz/handle/10338.dmlcz/119670
.
Reference: [1] Cassels J.W.S.: Local Fields.London Mathematical Society, Student Texts 3, Cambridge Univ. Press, London, 1986. Zbl 0595.12006, MR 0861410
Reference: [2] Basu S., Diagana T., Ramaroson F.: A $p$-adic version of Hilbert-Schmidt operators and applications.J. Anal. Appl. 2 (2004), 3 173-188. Zbl 1077.47061, MR 2092641
Reference: [3] de Bivar-Weinholtz A., Lapidus M.L.: Product formula for resolvents of normal operator and the modified Feynman integral.Proc. Amer. Math. Soc. 110 (1990), 2 449-460. MR 1013964
Reference: [4] Diagana T.: Towards a theory of some unbounded linear operators on $p$-adic Hilbert spaces and applications.Ann. Math. Blaise Pascal 12 (2005), 1 205-222. Zbl 1087.47061, MR 2126449
Reference: [5] Diagana T.: Erratum to: ``Towards a theory of some unbounded linear operators on $p$-adic Hilbert spaces and applications".Ann. Math. Blaise Pascal 13 (2006), 105-106. MR 2233015
Reference: [6] Diagana T.: Bilinear forms on non-Archimedean Hilbert spaces.preprint, 2005.
Reference: [7] Diagana T.: Fractional powers of the algebraic sum of normal operators.Proc. Amer. Math. Soc. 134 (2006), 6 1777-1782. Zbl 1092.47027, MR 2207493
Reference: [8] Diarra B.: An operator on some Ultrametric Hilbert spaces.J. Anal. 6 (1998), 55-74. Zbl 0930.47049, MR 1671148
Reference: [9] Diarra B.: Geometry of the $p$-adic Hilbert spaces.preprint, 1999.
Reference: [10] Johnson G.W., Lapidus M.L.: The Feynman Integral and Feynman Operational Calculus.Oxford Univ. Press, Oxford, 2000. MR 1771173
Reference: [11] Kato T.: Perturbation Theory for Linear Operators.Springer, New York, 1966. Zbl 0836.47009, MR 0203473
Reference: [12] Ochsenius H., Schikhof W.H.: Banach spaces over fields with an infinite rank valuation.$p$-adic Functional Analysis (Poznan, 1998), Marcel Dekker, New York, 1999, pp.233-293. Zbl 0938.46056, MR 1703500
Reference: [13] van Rooij A.C.M.: Non-Archimedean Functional Analysis.Marcel Dekker, New York, 1978. Zbl 0396.46061, MR 0512894
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_47-2006-4_14.pdf 224.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo