Previous |  Up |  Next

Article

Title: On the number of Russell's socks or $2+2+2+\dots=\text{?}$ (English)
Author: Herrlich, Horst
Author: Tachtsis, Eleftherios
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 47
Issue: 4
Year: 2006
Pages: 707-717
.
Category: math
.
Summary: The following question is analyzed under the assumption that the Axiom of Choice fails badly: Given a countable number of pairs of socks, then how many socks are there? Surprisingly this number is not uniquely determined by the above information, thus giving rise to the concept of Russell-cardinals. It will be shown that: • some Russell-cardinals are even, but others fail to be so; • no Russell-cardinal is odd; • no Russell-cardinal is comparable with any cardinal of the form $\aleph_\alpha$ or $2^{\aleph_\alpha}$; • finite sums of Russell-cardinals are Russell-cardinals, but finite products — even squares — of Russell-cardinals may fail to be so; • some countable unions of pairwise disjoint Russell-sets are Russell-sets, but others fail to be so; • for each Russell-cardinal $a$ there exists a chain consisting of $2^{\aleph_0}$ Russell-cardinals between $a$ and $2^a$; • there exist antichains consisting of $2^{\aleph_0}$ Russell-cardinals; • there are neither minimal nor maximal Russell-cardinals; • no Russell-graph has a chromatic number. (English)
Keyword: Bertrand Russell
Keyword: Axiom of Choice
Keyword: Generalized Continuum Hypothesis
Keyword: Dedekind-finite sets
Keyword: Dedekind-cardinals
Keyword: Russell-cardinals
Keyword: odd and (almost) even cardinals
Keyword: cardinal arithmetic
Keyword: coloring of graphs
Keyword: chromatic number
Keyword: socks
MSC: 03E10
MSC: 03E25
MSC: 03E50
MSC: 05C15
idZBL: Zbl 1150.03017
idMR: MR2337424
.
Date available: 2009-05-05T17:00:45Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119630
.
Reference: [1] Brunner N.: Realisierung und Auswahlaxiom.Arch. Math. (Brno) 20 (1984), 39-42. Zbl 0551.54004, MR 0785045
Reference: [2] Galvin F., Komjáth P.: Graph colorings and the axiom of choice.Period. Math. Hungar. 22 (1991), 71-75. MR 1145937
Reference: [3] Herrlich H.: Axiom of Choice.Lecture Notes in Math. 1876, Springer, Berlin, 2006. Zbl 1102.03049, MR 2243715
Reference: [4] Howard P., Rubin J.E.: Consequences of the axiom of choice.Mathematical Surveys and Monographs 59, American Math. Society, Providence, 1998. Zbl 0947.03001, MR 1637107
Reference: [5] Jech T.J.: The Axiom of Choice.Studies in Logic and the Foundations of Math. 75, North Holland, Amsterdam, 1973. Zbl 0259.02052, MR 0396271
Reference: [6] Russell B.: On some difficulties in the theory of transfinite numbers and order types.Proc. London Math. Soc. Sec. Sci. 4 (1907), 29-53.
Reference: [7] Russell B.: Sur les axiomes de l'infini et du transfini.Bull. Soc. France 39 (1911), 488-501.
Reference: [8] Schechter E.: Handbook of Analysis and its Foundations.Academic Press, San Diego, 1997. Zbl 0952.26001, MR 1417259
Reference: [9] Sierpiński W.: Sur l'egalité $2 m = 2 n$ pour les nombres cardinaux.Fund. Math. 3 (1922), 1-6. MR 0078413
Reference: [10] Tarski A.: On the existence of large sets of Dedekind cardinals.Notices Amer. Math. Soc. 12 (1965), 719 pp.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_47-2006-4_15.pdf 247.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo