Previous |  Up |  Next

Article

Title: Gaps and dualities in Heyting categories (English)
Author: Nešetřil, J.
Author: Pultr, A.
Author: Tardif, C.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 48
Issue: 1
Year: 2007
Pages: 9-23
.
Category: math
.
Summary: We present an algebraic treatment of the correspondence of gaps and dualities in partial ordered classes induced by the morphism structures of certain categories which we call Heyting (such are for instance all cartesian closed categories, but there are other important examples). This allows to extend the results of [14] to a wide range of more general structures. Also, we introduce a notion of combined dualities and discuss the relation of their structure to that of the plain ones. (English)
Keyword: Heyting algebras
Keyword: dualities and gaps
Keyword: Heyting categories
MSC: 05C65
MSC: 05C75
MSC: 05C99
MSC: 06D20
MSC: 18D15
idZBL: Zbl 1199.18009
idMR: MR2338826
.
Date available: 2009-05-05T17:01:03Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119635
.
Reference: [1] Adámek J., Herrlich H., Strecker G.: Abstract and Concrete Categories: The Joy of Cats.Pure and Applied Mathematics, John Wiley & Sons, New York, 1990. MR 1051419
Reference: [2] Davey B.A., Priestley H.A.: Introduction to Lattices and Order.Second Edition, Cambridge University Press, Cambridge, 2001. Zbl 1002.06001, MR 1902334
Reference: [3] Duffus D., Sauer N.: Lattices arising in categorial investigations of Hedetniemi's conjecture.Discrete Math. 152 (1996), 125-139. Zbl 0853.06006, MR 1388636
Reference: [4] Edmonds J.: Paths, trees and flowers.Canad. J. Math. 17 (1965), 449-467. Zbl 0132.20903, MR 0177907
Reference: [5] Hell P., Nešetřil J.: Graphs and Homomorphisms.Oxford University Press, Oxford, 2004. MR 2089014
Reference: [6] Hochstättler W., Nešetřil J.: Linear programming duality and morphisms.Comment. Math. Univ. Carolin. 40 3 (1999), 577-592. MR 1732478
Reference: [7] Hochstättler W., Nešetřil J.: A note on maxflow-mincut and homomorphic equivalence of matroids.J. Algebraic Combin. 12 3 (2000), 295-300. MR 1803237
Reference: [8] Johnstone P.T.: Topos Theory.Academic Press, London-New York, 1977. Zbl 1071.18002, MR 0470019
Reference: [9] Komárek P.: Some good characterizations for directed graphs.Čas. Pěst. Mat. 109 (1984), 348-354. MR 0774277
Reference: [10] Mac Lane S.: Categories for the Working Mathematician.Springer, New York, 1971. Zbl 0906.18001
Reference: [11] Nešetřil J.: Aspects of structural combinatorics (Graph homomorphisms and their use).Taiwanese J. Math. 3 4 (1999), 381-423. Zbl 0939.05001, MR 1730980
Reference: [12] Nešetřil J., Pultr A.: On classes of relations and graphs determined by subobjects and factorobjects.Discrete Math. 22 (1978), 287-300. MR 0522724
Reference: [13] Nešetřil J., Tardif C.: Density via duality.Theoret. Comput. Sci. 287 2 (2002), 585-595. Zbl 1058.05062, MR 1930237
Reference: [14] Nešetřil J., Tardif C.: Duality theorems for finite structures (characterising gaps and dualities).J. Combin. Theory Ser. B 80 1 (2000), 80-97. MR 1778201
Reference: [15] Welzl E.: Color-families are dense.Theoret. Comput. Sci. 17 (1982), 29-41. Zbl 0482.68063, MR 0644791
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_48-2007-1_2.pdf 257.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo